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To the Student 
 
You are about to begin a learning experience especially created for this course. This text 
is just one component. It provides an introduction to topics covered day-by-day in the 
course. I will take advantage of PowerPoint technology in the lecture class to lead you 
through complex sequences of ideas and mathematical formulas. I assume that you have 
read each chapter before the lecture and lab classes, so I review the material quickly.  
 
In the computer laboratory you will learn to use Excel and SPSS, software that calculates 
statistics, runs statistical tests, and produces graphs. Available on ReggieNet are Lab 
Texts to guide you and, during lab time, Lab Exercises for you to complete. Your 
laboratory instructor is a graduate student with expertise in statistical software. If you 
find it difficult to complete labs in the hour scheduled, you should read beforehand the 
Lab Texts, which are always available on the course ReggieNet site. It is especially 
important during the early labs to learn and practice Excel and SPSS. For many of you, 
these spreadsheet programs are new, while the class material during the first part of the 
course is review. 
 
All written information in the course is available in this text and on ReggieNet. Included 
there, in addition to the lab materials noted above, are the course syllabus, PowerPoint 
slides posted after each lecture, quizzes available when scheduled, a running tally of your 
grades, and overall class statistics. 
 
We will go through formulas in detail so that you will understand them. In practice, you 
will use a calculator, Excel and/or SPSS to do your calculations. Mostormulas are 
provided on tests, but you need to know when and how to use them. They are 
summarized at the end of this text. 
 
Mathematical material is best learned day-by-day. You need to consolidate one set of 
ideas to be ready to learn the next set. Follow this plan and you will be successful. I know 
from experience that students who think they don’t need to are often not successful. 
 
Dr. J. Cooper Cutting 
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Chapter 1: Introduction 
 
 

Statistical methods are critical tools used in almost all 
scientific research. As such, gaining a basic understanding of 
statistical methods and reasoning is essential to both 
conducting and understanding research findings.  However, a 
good understanding of basic statistical procedures isn’t 
restricted to scientists. You may not realize it, but a good 
understanding of basic statistics is also extremely useful in 
one’s everyday life as well.  As an exercise, go online for a 
newspaper (or pick one up) or watch the local or national news 

on television.  You’ll find statistical reports throughout; you will be better at recognizing 
and evaluating them after this course. 
 
Statistics are procedures that are used to summarize and sets of data.  Data are numbers 
within a context.  For example, consider the number 7.  By itself it is an abstraction.  
However, when considered within a context it takes on specific meaning. It could 
represent the number of days that you study for an exam, or the score on an exam, or the 
number of questions missed on an exam, or your rank order placement on the exam.  So it 
is the context associated with the number that gives the number an interpretable meaning.  
So, while this course involves abstract manipulation of numbers, it is also concerned with 
the context associated with the numbers. 
 
This course is broken into four basic parts:  

 
Producing Data covers basic research methods that are used to collect data. That is, we 
will discuss the context of the numbers, where the numbers come from, what they are tied 
to, and how we got them.  This section is necessary because it is critical to understand 
what the data are (what the numbers mean) and how they were collected in order to 
correctly analyze and interpret what they mean.  

 
Describing Data covers basic methods that are used to summarize and simplify sets of 
data.  These include both graphic and numerical summaries.  Statistics that are covered 
describe central tendency, variability, and correlation of two variables.   

 
Drawing Conclusions about Group Differences describes procedures used for 
hypothesis testing. We use data drawn from samples and make conclusions about entire 
populations from which they are drawn.  This section focuses on z-tests and t-tests for 
deciding which of two populations a sample most likely belongs to. 
 
Drawing Conclusions about Relationships between Variables and about Population 
Parameters continues to describe procedures used for hypothesis testing.  This section 
focuses on correlation, regression, and chi-square tests, which enable us to decide 
whether two variables co-vary. In addition, the section covers estimation of population 
means.  
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Section I: Producing Data 
 
 

In order to evaluate conclusions made from data, we must 
first consider the context associated with the numbers.  An 
important part of this context is how the data were produced. 
A complete understanding of where the numbers came from 
will help guide our interpretations of the data (i.e., what they 
mean). Therefore, we must begin our discussion with some 
basic concepts concerning how data are produced.  
 
Stop for a moment and consider some facts that you know.  

Now consider how you know what you know.  Was this piece of knowledge something 
that you were told or that you read in a book?  Is it based on something that you just 
believe in your gut?  Or is it something that you yourself have observed?  Have you 
observed it just once or have you seen it happen over and over?  Does it happen the same 
way each time, or somewhat differently each time?  How systematic were your 
observations? 
  
We’ll start by considering the scientific method, the method used to produce data in the 
sciences and social sciences.  The scientific method is a set of procedures that outlines 
different methods for making systematic observations of different situations (be they 
asteroids impacting planets, atoms colliding together, or people interacting is a room).  
We’ll see that different methods allow for different kinds of conclusions to be drawn.   
 
In this section we’ll also discuss how we measure characteristics (which we’ll call 
variables) of these different situations.  Within a particular situation, what we’re really 
interested in doing is describing the potential relationships between the different variables 
present.   
 
We’ll also discuss where the observations are made.  That is, if we’re interested in 
examining people interacting in a room, how do we decide which people to examine?  Do 
we wander around campus with a video camera?  Do we put an ad in the local paper?  
What sampling methods are considered “best,” and why?   

 
Another thing that we will consider in this section of the course is some basics of 
probability theory.  The nature of knowledge is one of uncertainty.  Conclusions are made 
as our best guesses based on the data that we have, with a known chance that the 
conclusions are wrong.  We’ll focus on why this is and on how we know what the level 
of chance is. 
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Chapter 2: Data Basics & Measurement 
 
 
Scientific Method 
 
The scientific method is a way of knowing facts or knowledge. It is one of the ways of 
knowing that we have available to us. Some of the other ways of knowing things include: 
tenacity (i.e., knowing something is true because the fact is stored in our memory), 
common sense (i.e., we know something is true because our understanding of the way 
things work in the world is consistent with that knowledge), reason or logic (i.e., we 
know something is true because logically it follows from other facts that we know are 
true), and authority (i.e., we know something is true because someone with authority or 
experience told us it was true). Many of the things you are learning as a student, you are 
learning through authority (i.e., your professors tell you it’s true), but we also hope that 
you are using logic and/or the scientific method to question what you are told by us and 
other sources of authority (like the media). That’s one thing we’re hoping you’ll get out 
of this class: methods for evaluating facts given to you by persons of authority (like your 
professors and the media). 
 
In fact, early scientists did rely on authority for their scientific 
knowledge. For example, if someone asked an early scientist if a 
feather or a stone would reach the ground first when thrown off the 
roof of a building, the scientist would refer to Aristotle’s theories on 
matter to answer the question. When Galileo became a scientist, 
however, he questioned the reliance on authority for scientific 
knowledge. Galileo’s method of answering the question about the 
feather and the stone would be to observe the answer by throwing 
both objects off the roof and observing which one hit the ground first. Galileo changed 
the way scientists gained knowledge. Since that time scientists have used observations to 
answer questions.  
  
Variables 
 
Our starting place for using the scientific method and making observations is a question 
we want to answer. The scientific method and statistics are just tools for helping us 
answer questions and learning new knowledge. Once we decide what we’re trying to 
learn about, we must consider our variables of interest. A variable is a characteristic or 
condition that may change from one person to the next. In other words, variables describe 
different information about individuals. Variables can be defined according to the values 
they take. A continuous variable is a variable that can take any number and can 
infinitely be broken down into smaller and smaller measurements. Time is a continuous 
variable, because it is involves a numerical measurement with an infinite number of 
smaller categories. It can be measured as a number in years, days, hours, minutes, 
seconds, etc. A discrete variable, on the other hand, involves a finite number of 
categories. Mood measured by the categories happy, sad, angry, and excited is a discrete 
variable because there are only four possible responses that can be made. There are no 
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other responses allowed. Number of people taking PSY 138 this semester is also a 
discrete variable, the unit of one person cannot be further subdivided. You cannot count 
the variable in any unit smaller than a whole person. 
 
One important variable in making our observations is the one that we are observing or 
measuring, called the response variable or dependent variable. This dependent variable 
will give us the observations of data that we will use to answer the question we’re 
interested in. 

 
Suppose for example that we are interested in the 
question: Do students with a high GPA watch less TV 
than students with low GPAs? There are two variables 
defined in this question: (1) GPA (high or low) and (2) 
amount of TV watched. In this case we will observe both 
of these variables from students so they will both be 
dependent variables in the study we will conduct to 
answer the question. 
 
 Sometimes the variables we’re interested in are 

fairly abstract and we need to decide how to define them for our study. For example, 
suppose that our question above had been: Do students who are high academic achievers 
watch less TV than students who are low academic achievers? Academic achievement is 
an abstract variable that can be defined in several ways: GPA, ACT score, score on final 
exams, etc. In order to study academic achievement, we must first operationally define it 
so that we can measure it in our study. If we choose GPA as our measure that means that 
GPA is our operational definition of academic achievement. 
 
Research Design Types 
 
We have a couple of research design types that we can use when making our 
observations. Our choice of research design is dependent on the kind of question we are 
asking and helps us decide what kind of variables we will have in our study. 
 
One type of design is the observational method or correlational study. The goal of an 
observational study is to look for a relationship between two or more dependent variables 
that we’ve measured from a group of individuals. The observational method would be 
appropriate for our example question in Part B, because are interested in how GPA that 
we are measuring is related to amount of TV watched, which we are also measuring. To 
answer the question, we need to see if GPA and amount of TV watched are related in a 
particular way, specifically, if students with high GPAs tend to have low scores on the 
amount of TV watched measure. Note that we observe only; we do not manipulate 
anything. 
 
Another design we can choose to use is an experiment. The goal of an experiment is to 
determine if one or more variables causes people to have high or low scores on a 
dependent variable. In our example above, we would have chosen an experiment if our 
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question had been: Does watching a lot of TV cause a student to have a low GPA? To 
answer this question with an experiment, we’d still have the same two variables: (1) GPA 
(high or low) and (2) amount of TV watched. GPA would still be a dependent variable 
we’d measure from the students. But we’re also trying to determine causation so we have 
to manipulate the amount of TV the students watch, not measure it. This means that 
we’ll randomly assign the students to groups, where each group watches a different 
amount of TV (e.g., Group 1 = no TV, Group 2 = 10 hours per week, etc.). In this way, 
we control how much TV each group watches and then we can compare the GPA of each 
group at the end of the study to see if amount of TV watched causes students to have high 
or low GPAs. Amount of TV is an independent or explanatory variable in our 
experiment, because it is the variable that is manipulated or controlled by the 
researcher. An experiment must have at least one independent variable or it is not an 
experiment. An independent variable must be used in order to determine causation. 
 
We could also choose to conduct a quasi-experiment to answer a question we’re 
interested in. A quasi-experiment is similar to an experiment, except that the explanatory 
variable we’re interested in is one that is not manipulated, but instead is measured 
and used to classify people into groups based on their scores. So if we measured the 
amount of TV watched by the students and then grouped them according to their scores 
(e.g., Group1 = all students who report watching no TV, Group 2 = all students who 
report watching between 1 and 10 hours per week, etc.). In this case, amount of TV 
watched is not manipulated by the researcher, because students haven’t been randomly 
assigned to the groups and told how much TV to watch. Instead, the students were 
assigned to the groups based on something measured from them. Amount of TV is a 
subject variable in the quasi-experiment, because it is measured from the students and 
then used to classify them into groups. Notice that this is different from the way amount 
of TV watched is used as a variable in the observational study described above. In an 
observational study, the variable is measured and then the score on that variable is 
matched with the score on another measured variable for each individual. In an 
observational study, individuals are not classified into groups. 
 
Scales of Measurement 
 

There are four scales of measurement that can be used to 
measure dependent variables. The researcher must choose 
the scale that best fits the response variable he or she wants 
to measure. There are nominal, ordinal, interval, and 
ratio scales.  
 
Nominal scales involve response categories that do not 
fall in any particular order. For example, if you were asked 
to describe the weather today to indicate if it is sunny, 
overcast, or rainy, you would be responding on a nominal 

scale. There are no possible responses between the categories on the scale and the 
categories don’t follow a particular high to low ordering.  
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An ordinal scale, however, involves categories with an implicit order from high to 
low. For example, if the possible categories for the weather today were good, medium, or 
bad, this would constitute an ordinal measurement scale. Note that we haven not 
quantified anything or said how much of a difference there is between good and medium 
or medium and bad. Since letters imply order, they could represent these categories, as 
the weather being graded A, B, or C. Numbers should not be used for response categories 
in ordinal scales, since they imply more than the characteristic of order. Unfortunately, 
numbers commonly are used for ordinal scales, as when good, medium, and bad are 
represented by 1, 2, and 3, or by 3, 2, and 1. (Do you see that it is arbitrary which 
direction you adopt?) Note that this usage does not mean that the difference between 
good and medium is the same as the difference between medium and bad.  

 
Interval and ratio scales always involve numerical responses. One of the important 
characteristics of the number system is that the intervals between numbers are the same, 
that is, the interval between 1 and 2 is the same as between 2 and 3 or the 10-20 interval 
is the same size as the 50-60 interval. However, interval scales have a limitation: they no 
true zero point. Temperature scales (F or C) used to indicate weather are interval scales, 
because a value of 0 does not mean absence of temperature. Likewise, an intelligence 
quotient (IQ) is an internal scale because it has no true value of 0.  Numerical measures 
that do have a true zero point are called ratio scales.  Familiar examples are time, height, 
and weight. Any scale that involves counting is a ratio scale: number of items correct on 
a test, number of days that you study per week, number of friends that you have, etc. 
 
Variability and Bias 
 
There are two issues of concern when collecting or evaluating observations in a study. 
They are the variability of the measurements and bias in collecting them. These two 
topics are often covered in courses on research methods under the labels reliability and 
validity. 
 
Variability: How can measurement be reliable? 
 
Later, in Chapter 9, we will discuss the variability in a set of scores. An example is the 
normal temperature for a time of year. The temperature on any given day is usually not 
that exact temperature. Departures from the norm are variability in scores. We are 
accustomed to such variability; however, we expect a single measure to be accurate and 
without variability. But is it?  
 
You weigh yourself at home, in the gym, and at the health center on the same day and 
find that you have different weights. Are the scales set (calibrated) differently? Does your 
weight vary at different times of day? What is your “true” weight? How do we get a 
reliable measure of your weight? 
 
To prepare for the SAT test, you buy a book that has a number of sample tests. You take 
the test three times and get a different score each time. Were you varying how hard you 
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tried, or did your attention vary? Maybe the questions varied in difficulty on each test. 
What is your “true” scholastic aptitude? How do we get a reliable measure of it? 
 
These are examples of variability in measurement. In everyday practice, we often neglect 
such variability and accept the value of a single measurement as accurate. To help 
reorient your thinking on this issue, consider this example. Imagine your “true” score as a 
bull’s-eye on a target and think of measurement as throwing a dart at it.  An unskilled 
dart thrower will have a lot of variability; the darts will be all over the target. A skilled 
thrower will have low variability; the darts will be near the bull’s-eye, although getting a 
bull’s eye may not happen often. Good measurement is like skilled dart throwing; it has 
low variability. Note that, like dart-throwing, measurement is not expected to be exact; 
there will always be some measurement error. 
 
Because of variability in measurement, scientists do not have high confidence that a 
single measurement is accurate. For a new measure, scientists take more than one 
reading, or administer a test more than once, and average the results. A goal of scientific 
research is to improve the accuracy of measurement, and a lot of research is conducted on 
the measures themselves.  Scientists acknowledge measurement error and may include an 
estimate of it in their research reports. In courses on research methods and measurement, 
you will learn about different kinds of reliability, such as test-retest reliability and split-
half reliability. The former involves giving a test twice and the latter involves comparing 
answers on odd question to those on even questions. The closer the two scores are, the 
more reliable the measure is. 
 
Bias: How can measurement be valid? 
 
What if you find out that you always weight two pounds less on your scale at home than 
the one in the gym. The latter is one of the expensive balance models, and the gym 
attendants assert that it is accurate. Is your scale at home biased? It’s easy to imagine that 
it could be so without your suspecting it. Probably most home scales are biased in this 
direction! 
 
What if you find that despite getting As in all your math courses in high school, you score 
below average on the SAT quantitative section. The test company provides a lot of 
evidence that its tests are accurate. Are your school grades biased measure of “true” 
quantitative ability? Perhaps they are influenced by a grading system that rewards doing 
homework regularly and includes a lot of extra credit. If grades are serving that purpose, 
which is common, then they provide only a biased measure of quantitative ability. 
 
These examples demonstrate that in everyday practice we often are unaware of bias and 
instead accept measures as valid. The dart-throwing example should help to sharpen your 
thinking on this issue. Again, imagine your “true” score as a bull’s-eye on a target and 
think of measurement as throwing a dart at it. Consider an unskilled dart thrower who 
throws the darts too low. He or she tries to adjust on the second set of throws, but they 
again are all too low, although less so than before. We would say the person has a bias to 
throw low and advise him or her to aim higher. Unlike variability, which is random or in 
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all directions, bias is a systematic error in one direction. Good measurement seeks to 
identify and overcome such biases. Note that even for unbiased measures there will still 
be measurement error, which is less harmful because it averages out. 
 
Scientific measurement seeks to be valid, that is, to measure the construct of interest 
without being biased by some other factor. Research to achieve this is called construct 
validity. As in the example above, it seeks to sort out measurement of one construct 
(quantitative ability) from others (motivation, good study habits). Such research would 
support the SAT quantitative score rather than grades in math courses as a valid measure 
of quantitative ability.  
 
Scientific research also seeks to be valid. Reducing bias in how research is conducted is 
referred to as internal validity. There has been a lot of research on experimenter bias, 
which is why drugs are tested with double-blind procedures: Neither the dispenser or 
recipient knows whether it is the drug or the placebo. Reducing bias in how the research  
method represents the process of interest in the natural environment is referred to as 
external validity. The problem is that control exercised in research can end up producing 
a situation that is too artificial. The results may be internally valid, but they cannot be 
generalized to what the entire population would do in realistic situations. Courses on 
research methods cover ways of improving construct validity, internal validity, and 
external validity. 
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 Practice	  Questions:	  Set	  1	  
 

 

 (1)   Here	  is	  a	  portion	  of	  a	  data	  set	  that	  describes	  major	  league	  baseball	  players	  as	  
of	  opening	  day	  of	  the	  1999	  season:	  

	  
Player	   Team	   Position	   Age	   Salary	  
Dunwoody	   Marlins	   Outfield	   24	   222	  
Osuna	   Dodgers	   Pitcher	   26	   1050	  
Pettitte	   Yankees	   Pitcher	   26	   5950	  
Sosa	   Cubs	   Outfield	   30	   9000	  

	  
(a)	  What	  are	  the	  individuals	  in	  this	  data	  set?	  	  
	  
(b)	  In	  addition	  to	  the	  player's	  name,	  how	  many	  variables	  does	  the	  data	  set	  

contain?	  Which	  of	  these	  variables	  take	  numerical	  values?	  	  
	  
(c)	  What	  do	  you	  think	  are	  the	  units	  in	  which	  each	  of	  the	  numerical	  values	  is	  

expressed?	  For	  example,	  what	  does	  it	  mean	  when	  Sammy	  Sosa's	  salary	  
is	  listed	  as	  9000?	  

	  
(2)	  Does	  regular	  exercise	  reduce	  the	  risk	  of	  a	  heart	  attack?	  Here	  are	  two	  ways	  to	  

answer	  this	  question:	  	  
	  

Study	  1:	  A	  researcher	  finds	  2000	  men	  over	  age	  40	  who	  exercise	  regularly	  and	  
have	  not	  had	  heart	  attacks.	  She	  matches	  each	  with	  a	  similar	  man	  who	  does	  
not	  exercise	  regularly,	  and	  she	  follows	  both	  groups	  for	  5	  years.	  

	  
Study	  2:	  Another	  researcher	  finds	  4000	  men	  over	  age	  40	  who	  have	  not	  had	  

heart	  attacks	  and	  are	  willing	  to	  participate	  in	  a	  study.	  He	  assigns	  2000	  of	  
the	  men	  to	  a	  regular	  program	  of	  supervised	  exercise.	  The	  other	  2000	  
continue	  their	  usual	  habits.	  The	  researcher	  follows	  both	  groups	  for	  5	  years.	  	  

	  
(a)  Explain	   why	   the	   first	   is	   an	   observational	   study	   and	   the	   second	   is	   an	  

experiment.	  	  
	  
(b)  Why	  does	  the	  experiment	  give	  more	  useful	  information	  about	  whether	  

exercise	  reduces	  the	  risk	  of	  heart	  attacks?	  
 
(Continues	  on	  next	  page)	  
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(3)	  A	   researcher	  evaluates	  a	  new	  growth	  hormone.	   	  One	  sample	  of	   rats	   is	   raised	  

with	   the	   hormone	   in	   their	   diet	   and	   a	   second	   sample	   is	   raised	   without	   the	  
hormone.	   After	   six	   months,	   the	   researcher	   weighs	   each	   rat	   to	   determine	  
whether	  the	  rats	  in	  one	  group	  are	  significantly	  larger	  than	  the	  rats	  in	  the	  other	  
group.	  	  	  

	  
A	  second	  researcher	  measures	  femininity	  for	  each	  individual	  in	  a	  group	  of	  10-‐
yr	  old	  girls	  who	  are	  all	  daughters	  of	  mothers	  who	  work	  outside	  of	  the	  home.	  	  	  
These	  scores	  are	  then	  compared	  with	  corresponding	  measurements	  obtained	  
from	   girls	   who	   are	   all	   daughters	   of	   mothers	   who	   work	   at	   home.	   	   The	  
researcher	  hopes	  to	  show	  that	  one	  group	  is	  significantly	  more	  feminine	  than	  
the	  other.	  	  	  
	  
Explain	  why	  the	  first	  researcher	   is	  probably	  not	  concerned	  about	  the	  validity	  
of	  measurement,	  whereas	  the	  second	  researcher	  probably	  is	  (hint:	  think	  about	  
what	  is	  being	  measured).	  

	  
(4)	   Identify	   the	   scale	   of	   measurement	   that	   allows	   each	   of	   the	   following	  

conclusions:	  
	  

(a)	  Peter’s	  score	  is	  larger	  than	  Phil’s,	  but	  we	  cannot	  say	  how	  much	  larger.	  
	  
(b)	  Peter’s	  score	  is	  three	  times	  larger	  than	  Phil’s.	  
	  

(c)   Peter	   and	   Phil	   have	   different	   scores,	   but	  we	   cannot	   say	  which	   one	   is	  
larger,	  and	  we	  cannot	  determine	  how	  much	  difference	  there	  is.	  
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Chapter 3: Experiments 
 

Basic Facts about Experiments 
 

So far we've talked mainly about variables as something we 
measure. But, variables can also be something that we 
manipulate as experimenters, rather than just observe or 
measure. In fact, that is one defining characteristic of an 
experiment, that the experimenter manipulates a variable in the 
study. 
 
 An experiment contains both an independent variable  and 
a dependent variable. An independent variable is 
manipulated by the experimenter, while the dependent 
variable is measured by the experimenter. 

 
When using observational or correlational designs, independent variables can also be 
called explanatory variables because they explain the changes that occur in the 
dependent variable. Dependent variables are sometimes called response variables 
because they come from the responses collected from our experiment participants (they 
used to be called “subjects,” a term now in disfavor). 
 
All research requires operational definitions of variables.  The conceptual variables we 
are interested in are often abstract theoretical entities. To conduct research on them, we  
need to define them in a concrete way so that they can be measured or manipulated. Our 
findings will be about this the operations selected for research and only by inference 
about abstractions. 
 
An important aspect of experiments is that they allow us to determine cause and effect 
(or causal) relationships between the independent and dependent variables. In fact, 
when we conduct an experiment, we make a prediction or hypothesis about the way in 
which the independent variable will affect or change the values we get for our dependent 
variable. 
 
Independent variables can involve treatments that we apply to one group of our subjects 
and not another group (called the control group) or they can just involve different 
treatments that we set up in our study.   
 
For example, if we were to conduct an experiment to answer a research question about 
how often people faint at the dentist, we could set up a scenario where some people 
believe they are at a dentist's office and others do not and then 
count the number of people in each group who pass out. 
 
 The IV = scenario received.  It has two levels:  

Group 1 - dentist scenario  
Group 2 - no dentist scenario  
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Another type of experiment we could do would be to give different kinds of therapy 
treatment to people who claim they usually pass out at the dentist's office and then 
compare the incidence of passing out across the different therapy groups to see which 
type of therapy works best. 
 

 
 IV = type of therapy received, 3 levels 
 Group 1 - therapy A  
 Group 2 - therapy B  
 Group 3 - therapy C  
 
 
 

Experiments can determine cause and effect relationships because: 
 

•   We randomly assign subjects to groups to make sure the groups are similar 
before we give each group a treatment. We also make sure that we have enough 
subjects in each group to have similar groups. If we don't have enough subjects 
in each group, one subject who is different from the others could cause chance 
variation in the results. 
 

•   We control variables other than the manipulated variables that influence the 
dependent variable. By holding things other than the manipulated varliable 
constant, we reduce any differences in treatment of our groups and therefore 
reduce variability. 

 
•   We reduce confounding or “lurking” variables that are not part of the 

independent variable, but could affect the dependent variable. If we have a 
lurking variable in our experiment, we can't know if changes in the dependent 
variable are caused by the independent variable or the lurking variable. 
Therefore, we must control these lurking variables as much as possible. 

 
In any experiment, there will always be some amount of error, even if it is very small. 
Therefore, we must use statistics to determine if our data support or do not support our 
hypothesis. We rely on statistical significance to decide if our data support our 
hypothesis. Most of this course is learning how make such decisions. 
 
We obtain statistical significance when an observed difference (or effect) is so large that 
it would rarely occur by chance. 
 
We have some specialized experimental designs for controlling for internal validity 
problems. Using these methods will not guarantee control of all bias, but when they are 
appropriate, these methods can help us control for some forms of bias. They are 
mentioned briefly here but covered extensively in a course on research methods. 
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•   Matching design: Sometimes random assignment is not enough to control for 

subject differences across groups, especially if we have a low number of subjects 
in each group. If we are concerned about a particular difference between 
subjects, we can match a pair of subjects in the different groups on this 
characteristic. For example, if we think there may be differences on our measure 
based on gender alone, we might match subjects on gender and then randomly 
assign each member of the matched pair to a different group. 

 
•   Double-blind designs: In some studies (for example, drug studies) we may be 

concerned with experimenter bias. This might occur if the experimenter knows 
the hypothesis for the experiment and then administers the treatment (e.g., drug 
vs. placebo) to the groups. In this case, the experimenter may inadvertently treat 
the groups differently, which could affect the results of the study. Using a 
double-blind design controls for experimenter bias such that neither the subject 
nor the experimenter knows which treatment (e.g., drug or placebo) a subject is 
receiving. 

 
•   Block designs: Blocks designs can be conducted in a similar manner to matching 

designs. The primary difference is that in a block design, a group of similar 
subjects (e.g., females) constitute a block and randomization is done for each 
block separately, instead of within pairs as in the matching design. The matching 
design just a special case of the block design, where pairs constitute a block. 

 
•   Completely randomized design: As experiments get more complex (e.g., more 

than one independent variable), we may end up with more than just two or three 
groups of subjects. By assigning all experimental subjects at random to all 
treatments, we can reduce group difference biases. 

 
Designing an Experiment 
 
 At the heart of an experiment is a comparison between two (or more) conditions. In other 
words, you (the experimenter) will always be comparing at least two things. This may 
include comparing your sample with a known population, or two (or more) different 
samples (groups) against each other, or even multiple scores within a single sample of 
individuals. 
 
 Generally the process involves a number of steps: 

•   Identifying your research questions 
•   Identifying your variables of interest 
•   Specifying your hypotheses (how are the variables related to one another) 
•   Selecting a research design 
•   Collecting and analyzing your data 
•   Drawing conclusions from your data about your hypotheses. 
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Let's consider as an example the steps that one may go through trying to design an 
experiment to test the following claim: Chocolate-covered peanuts enhance memory. 
 

•   Construct a formal hypothesis 
o   e.g., Chocolate-covered peanuts improve recall scores of words. 

•   Identify the independent and dependent variables. 
o   IV: consumption of chocolate-covered peanuts 
o   DV: a measure of memory performance 

•   How to manipulate the IV 
o   Presence or absence of chocolate-covered peanuts m & m's. 
o   (How about manipulating the quantity of m & m's 

•   Do we need a control group, a placebo? Any other control variables? 
•   Identify how we'll measure the DV. 
•   Are there any subject relevant variables (use randomization and matching) 
•   Are the effects the same for all sexes? Ages? Majors? 
•   Situation relevant variables (test conditions, experimenter behavior, timing) 

o   e.g., the list of words, how fast presented  
 
Selecting an Experimental Design 
 
As mentioned above, an experiment involves a comparison between at least two groups. 
But there are a number of different ways to create two (or more) groups.  For example, 
there are two different ways to handle the different levels of an independent variable.  
There can be independent samples as in the various examples above. You manipulate 
your independent variable across separate groups of people, so each level of your IV is 
given to a different group or sample of individuals. The alternate is to use related 
samples, in which you match pairs of participants into different groups receiving 
different levels of the IV (matched-pair design) or have one group of participants 
received each of the IV (repeated measure design).  
 
We will spend the rest of the course learning about these different designs and the 
different statistical procedures they require. As an aid, we will use the decision tree below 
that lists common experimental designs and their statistical tests. 
  
Here is an example of how to use the decision tree. Suppose that you (a statistics 
instructor) are interested in how well your lecture on displaying distributions worked. 
You decide to test your students before and after the lecture. Both tests are designed to 
measure the students' knowledge of experimental design. 
 
What kind of experimental design is this?  Go through the questions in the tree. 

•   How many groups (samples) of people do you test? 1 
•   How many scores (pieces of data) do you collect from each person? 2 

 
This leads you to a "within-subjects design."  You've got one group, with two scores (pre-
test scores and post-test scores) from each person (so the scores are "related" to each 
other by virtue of being from the same people).  The IV here (2 levels: before lecture and 
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after lecture) is being manipulated as a "within groups" variable.  We will return to the 
decision tree after we have completed our coverage of descriptive statistics and are ready 
to learn about inferential statistics (statistical tests). 
 
 

Decision Tree 
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Practice	  Questions:	  Set	  2	  
 
(1)  Dr.	   Jacobs	  conducts	  a	   research	  study	   investigating	   the	  effects	  of	  a	  new	  drug	  

that	  is	  intended	  to	  reduce	  the	  craving	  for	  alcohol.	  	  A	  group	  of	  alcoholics	  who	  
are	   being	   treated	   at	   a	   clinic	   is	   selected	   for	   the	   study.	   	   One-‐half	   of	   the	  
participants	   are	   given	   the	   drug	   along	   with	   their	   regular	   treatment,	   and	   the	  
other	   half	   receives	   a	   placebo.	   	   Dr.	   Jacobs	   records	   whether	   or	   not	   each	  
individual	  is	  still	  sober	  after	  6	  months.	  

	  
(a)   Identify	  the	  independent	  variable	  in	  this	  study.	  

	  
(b)   Identify	  the	  number	  of	  levels	  (and	  what	  they	  are)	  of	  the	  IV.	  

	  
(c)   Identify	  the	  dependent	  variable	  of	  the	  experiment.	  

	  
(d)  Assuming	   that	   the	  study	   includes	  participants	   in	  age	   from	  18-‐62	  years	  of	  

age,	  what	  kind	  of	  variable	  is	  age?	  
	  
(e)   If	  the	  participants	  in	  the	  drug	  group	  are	  noticeably	  older	  than	  those	  in	  the	  

placebo	  group,	  age	  may	  be	  what	  kind	  of	  variable?	  
	  

(2)   In	   an	   experiment,	   participants	   are	   usually	   assigned	   to	   treatments	   using	   a	  
random	  assignment	  procedure.	  	  Explain	  why	  random	  assignment	  is	  used.	  
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Chapter 4: Sampling & Basic Probability 
 
 
Sampling Techniques 
 

Once we’ve chosen our research design and specified our 
variables, we’re ready to begin collecting our 
observations (i.e., our data). But we need to decide who 
to collect the observations from or who our subjects are 
going to be. This group of individuals who will 
participate as subjects in our study is called the sample. 

In most cases the sample is a much smaller group of individuals than the group we’re 
trying to learn about. This larger group that we want to learn about is called the 
population.  
 
The population we’re interested in is often a very large group like all humans, all 
Americans, or all children. Although it’s the large group we’re really interested in, it 
would be quite difficult in most cases to collect observations from all humans or all 
Americans. Therefore, we must represent this population with a sample that is as much 
like the population as possible. For example, if the population includes men and women, 
then our sample should also include men and women. The larger our sample, the better 
we will be able to represent the full population. But we must also be practical, because 
there will be a limit to the number of subjects we will be able to run due to time 
constraints and availability of the subjects. 
 
In order to ensure a good representation of the population by the sample we choose, we 
rely on specific sampling techniques to choose members of the population for our 
sample. This is important because a good sampling technique can reduce variability. 
Variability is how much the scores in a data set (or distribution) are different from one 
another. If the variability is high, then the scores are spread out across the measurement 
scale and are very different from each other. Reducing the variability in a data set allows 
us to represent the population better and also allows us to more accurately answer our 
research question (more on this in Unit III of the course).  
 
The best way to choose a sample that will represent the population (and reduce 
variability) is to use a simple random sample. This means that each member of the 
population has an equal chance of being chosen. This is the same thing as choosing 
people at random from the population. However, if we have a large population (e.g., all 
Americans), it will very difficult to make sure that every member of the population can 
be chosen. We would need to have a list of all Americans to choose from. Not even the 
US Census Bureau can collect responses from all Americans, and the responses they do 
collect require more resources than most researchers have at their disposal. Therefore, 
although simple random samples are the best type of samples, they are rarely used 
because they are too difficult to collect.  
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A more practical type of sample is called a convenience sample. A convenience sample 
is chosen from the population based on who is available and willing to be sampled. A 
convenience sample can use volunteers like the subject pool that is sampled from for 
many psychology studies. A sample can also be obtained using a technique called 
stratified sampling to ensure that certain characteristics of the population are preserved. 
In a stratified sample, subjects are chosen in equal proportions to those that exist in the 
population. For example, if in the population 30% are left-handed, then in a stratified 
sample, subjects will be chosen such that 30% of them are left-handed.  
 
Probability 
 
Why do we need to know anything about probability?  In part, it is because we deal with 
it just about every day of our lives. 
 

Weather forecasts (50% chance of rain, means under 
conditions like those that we predict we’ll have today, it 
rains half the time) 

 
Lotto tickets odds (chances of winning $1,000,000 are 1 
in 10,000,000; of course this means chances of winning 
$0 is 9,999,999 out of 10,000,000).   

 
The main reason that we’re discussing it in this course is 

because probability is a central to inferential statistics.  Inferential statistics are 
techniques that allow us to make decisions about entire populations using only samples.  
In other words, instead of testing every member of a population, we can use a subset of 
individuals in coordination with inferential statistics and still draw strong conclusions.  
However, because we use just a subset of individuals, our conclusions are made within a 
probabilistic context.  Let’s briefly consider the logic of why this is. 
 
Suppose that you wanted to test whether all dogs have four legs.  You could go out and 
try to check every dog in existence (do a census of dogs) so that you 
can count their legs.  This will take a lot of resources.  An 
alternative approach is to take a reasonable large sample of dogs and 
count their legs.  If you find a single dog with fewer (or greater) 
than four legs, then you may reject the claim that all dogs have four 
legs.  So a sample can provide enough evidence to reject a claim.  
On the other hand, suppose that there is a dog (Spot) in the 
population with 3 legs; however, that dog does not get into your 
sample (say of 1,000,000 dogs).  Based on your sample you may 
wish to conclude that the claim is correct, all dogs have four legs.  
However, you’d be wrong since Spot has only 3.  Because the sample is only a subset of 
the population, you may end up missing the critical individuals within the population who 
would lead you to reject the claim.   
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So how does this all relate to probably?  Recall that inferential statistics are interpreted 
within a probabilistic framework.  This means that rather than concluding that a claim is 
correct, we argue that the evidence from a sample supports the claim with a certain level 
of confidence (later in the course we’ll talk about something called confidence intervals).  
In other words we will make statements like, “based on our sample of ten thousand dogs, 
we conclude that it is very likely that all dogs have four legs.” 

 
The Basic Probability Formula 
 
You should have been introduced to probability in previous courses, such as Finite 
Mathematics. Here we cover it briefly. In a situation where several different outcomes are 
possible, we define the probability for any particular outcome as a fraction or 
proportion.  If the possible outcomes are identified as A, B, C, D, and so on, then: 
 
  Probability of A = number of outcomes classified as A 
           total number of possible outcomes 
 

Let’s make this more concrete with an example.  Imagine that you are 
playing card wars with your kid sister, and each of you has your own 
deck of 52 cards.  She picks the King of spades from her deck.   
 
 
What are the odds that you’ll pick the King of Spades from your deck? 
     
Probability of King-spades =        picking the King of Spades           

                                         total number of possible cards picked 
 
         =  1 / 52 
 
Another way that we state the same thing is with the following notation using f for 
frequency of the event: 

 
p(Kª) = f / N 

 
This f / N formula will be important to our discussion of frequency distribution tables.  
This formula will be used to figure out the values in the proportions column.  In fact, 
probabilities are most often given as proportions (but we can also give them as fractions 
or percentages).  
 
Probability and Random Sampling 
 
For this formula of probability presented above to be accurate, the selection of 
individuals (sampling) must be obtained by random sampling. 
 
A random sample must satisfy two requirements: 

1.  Each individual in the population has an equal chance of being selected. 
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2. If more than one individual is to be selected for the sample, there must be 
constant probability for each and every selection. 

 
Let’s reconsider our card game situation.  Suppose that you are a card cheat and you 
stacked the deck so that all of the high cards are on the top, and the low cards are on the 
bottom.  So you turn over the top card, and surprise, it is a high card.   
Was this a random sample?   
     
No, because not every card had an equal chance of being selected (because the low cards 
were not near the top of the deck). 
 
Suppose that you and your sister are playing with one deck of cards.  Now she picks the 
King of Spades.  Now you pick from the remaining cards.   
     
Is your chance of picking the King of Spades still 1 in 52? 
      
No, because she already picked the King of Spades, so it isn’t available for future 
selection.  To have a truly random sample, you must replace the King of Spades into the 
deck.   

 
Sampling with replacement  - a sampling method in which each sample (individual) is 
replaced into the population before the selection of the next sample (individual). 
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 Practice	  Questions:	  Set	  3	  
 

 (1)	   Your	   college	  wants	   to	   gather	   student	   opinion	   about	   parking	   for	   students	   on	  
campus.	  	  It	  isn’t	  practical	  to	  contact	  all	  students.	  

	  
(a)	  Design	   a	   bad	   sample.	   	  Give	   an	   example	  of	   a	  way	   to	   choose	   a	   sample	  of	  

students	  that	  is	  poor	  practice	  because	  it	  depends	  on	  voluntary	  response.	  
	  
(b)	  Design	  another	  bad	  sample.	  	  Give	  an	  example	  of	  a	  way	  to	  choose	  a	  sample	  

of	  students	  that	  is	  poor	  practice	  that	  doesn’t	  involve	  voluntary	  response.	  
	  
(c)	  Design	  a	  good	  sample.	   	  Give	  an	  example	  of	  a	  way	  to	  choose	  a	  sample	  of	  

students	  that	  is	  good	  practice.	  
	  

(2)	  Suppose	  that	  a	  University	  Club	  has	  25	  student	  (S)	  members	  and	  10	  faculty	  (F)	  
members.	  	  Their	  names	  are	  as	  follows:	  

	  
Barrett	  
Bergner	  
Brady	  
Chen	  
Critchfield	  
Desouza	  
Draper	  

S	  
F	  
S	  
S	  
F	  
F	  
S	  

Duncan	  
Frazier	  
Gibellato	  
Gulati	  
Han	  
Hostetler	  
House	  

S	  
S	  
S	  
S	  
S	  
S	  
F	  

Hu	  
Jarvis	  
Jimenez	  
Kahn	  
Katsaounis	  
Kim	  
Kohlschmidt	  

S	  
F	  
S	  
F	  
S	  
S	  
S	  

Lee	  
Main	  
McBride	  
Nemeth	  
O’Rourke	  
Paul	  
Pryor	  

S	  
S	  
F	  
S	  
S	  
S	  
F	  

Reeder	  
Ren	  
Santos	  
Sroka	  
Tobin	  
Tordoff	  
Wang	  

F	  
S	  
S	  
S	  
F	  
S	  
S	  

	  
	  Assuming	  that	  the	  club	  may	  send	  only	  one	  person	  to	  an	  international	  conference.	  
	  

(a)  What	  are	  the	  odds	  of	  sending	  Dr.	  Tobin	  to	  the	  conference?	  
	  

(b)  What	  are	  the	  odds	  of	  sending	  a	  student	  to	  the	  conference?	  
	  

(c)  What	  are	   the	  odds	  of	   sending	   somebody	  with	   the	   last	  name	   that	  begins	  
with	  the	  letter	  K? 
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Section II: Describing Data 
 

 
Typically, datasets involve large sets of numbers.  It is often 
difficult to understand the “story” that these numbers are “telling” 
us if we attempt to look at them all at once.  In the next unit in the 
course we’ll examine some techniques we use to describe data. In 
other words, how do we take the raw scores we get (from the 
methods we discussed in the last unit) and turn them into 
something that tells a meaningful story? 

 
As we procedure through this section of the course we’ll see that the key concept is 
variability. The numbers in a dataset are generally measurements of variables.  Recall 
that variables are characteristics of situations.  They are called variables because they 
vary.  The goal of the researcher is to understand and describe how (and ultimately why) 
the characteristic varies. 

 
We will begin with a discussion of different ways of “seeing” how the scores of a 
variable are distributed across our entire dataset.  Then we will 
discuss how to quantify (describe with numbers) the overall 
distribution of the variable.  We will end with discussions about 
how we can compare distributions of different variables, which is 
what lies at the heart of examining how variables are related to one 
another. 
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Chapter 5: Displaying Distributions 
 
Frequency Distributions 
 
We can summarize the data with tables listing the frequency of each score. Creating such 
a table by hand is more time-consuming than stem and leaf displays, but we now have 
computer programs like SPSS to do so for us. 
 
A frequency distribution is an organized tabulation of the number of individuals located 
in each category on the scale of measurement. 
 
To help you understand the importance of a frequency distribution consider this scenario: 
 

Assume you are interested in people’s ability to regulate their actions.  You 
administer the Temporal Discounting Measure (TDM) to 25 introductory 
psychology students and record their scores.  Possible scores range from 10 
to 20.  The students’ raw scores are shown below: 

 
   11 12 13 18 12 
   12 17 10 15 14 

17 16 14 14 15 
   19 11 13 20 12 

14 15 12 13 16 
 

Suppose you have just finished collecting this data and are interested in determining 
whether this sample has scored similarly to other samples you have studied in the past.  
That is, other samples have usually produced scores from 10 to 20. 
 
Consider these questions: 

•   Does it look to you as if this sample is scoring similar to those other samples? 
•   Does it appear that this sample has a majority of high-scoring individuals (closer 

to 20) or low-scoring individuals (closer to 10)? 
•   Do you see scores that look abnormal or outside the range of most other scores? 

 
With the data in its current form, it is very difficult to answers these questions and it 
would be very time-consuming.  There must be a more organized way to present the data 
that will help us answer these questions quickly. One way to organize data is to create a 
frequency distribution table. 
 
A frequency distribution takes a disorganized set of scores and places them in order 
from highest to lowest, grouping together all individuals who have the same score.   
 
Frequency distributions also show: 

•   Whether scores are generally high or low.  
•   Whether they are concentrated in one area or spread out across the entire scale. 



 

 27 

•   An organized picture of the data.  
•   The location of any individual score relative to all of the other scores in the set. 

 
Creating a frequency distribution table 
 
We will go through the steps here to create frequency distribution tables. In lab, you will 
learn how to use SPSS to create them for you. 
 

1. Find the range of responses (highest to lowest).  Here, our participants scored 
between 10 and 20, so we create a table with those values (in descending order) in 
the X column in the table. We’ll get to the other columns in the steps below. 
    ___________________  

 X f p % 
      20 
      19 
       18 
          17 
        16 
      15     
      14    
      13    
      12   
      11    
      10    
  
2. How many of each score did we get? Fill these numbers in the f column; this is 
the frequency of each score.       

____________________ 
     X     f p % 
    20    1 

        19    1 
                                         18    1 
        17    2 
          16       2 
        15       3 
        14       4 
             13       3 
        12       5 
        11       2 
        10       1 
  

If you wanted to know what the total of all of the Xs were, how would you do 
it? The easiest way would be to multiply the X and f columns and then add 
(sum) the results: S X = S (X *f). (The upper-case Greek letter for s, sigma, is 
our symbol for sum: S.) 
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Notice that if you add up the frequency (f) column, you get the total number of 
observations: N = S f. 

 
3. We also typically add a column labeled p for proportion. This answers the 

question of how much of the total group got this value of X? Using the following 
formula, we can fill in the p column on the table. 

� 

p =
f

N

  (Recall that N = the total number of observations.) 

____________________  
    X    f    p %  

        20    1   .04 
        19    1   .04 
        18    1   .04 
        17    2   .08 
          16       2   .08 
        15       3   .12 
        14       4   .16 
             13       3   .12 
        12       5   .20 
        11       2   .08 
        10       1   .04 
    ____________________ 
 
 

4. What percentage of the group got this value for X? To answer this question we 
need to fill in the % column for percent representation in the sample. Note that 
all numbers entered in this column are percents; the % sign is not needed.  

 
This information is found by multiplying the proportion column and 100: p * 100.  

     
 __________________________  

   X   f    p      % 
 

    20    1   .04     4 
        19    1   .04     4 
                                       18    1   .04     4 
        17    2   .08     8 
          16       2   .08     8 
        15       3   .12   12 
        14       4   .16   16 
             13       3   .12   12 
        12       5   .20   20 
        11       2   .08     8 
        10       1   .04     4 
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•   Note: Grouped frequency distribution tables.  Often ranges or categories, rather 
than specific values, are used for X.  Think of a grading scale, (A = 90-100, B = 
80-89, etc…). It is possible to set up frequency distribution tables for these too. 

 
Percentile Ranks: Locating Individuals 
 
So far we’ve talked about describing an entire set of observations, but we can also use 
frequency distributions to describe the position of individuals within the set. 
 
The rank or percentile rank of a particular score is defined as the percentage of 
individuals in the distribution with scores at or below the particular value. When a score 
is identified by its percentile rank, the score is called a percentile. 
Suppose the following table contains the scores of a vocabulary quiz: 
 

___________________________________  
   X    f    p   %     cf      c% 

  
           5    2   .05     5    40    100 
       4  10   .25   25    38      95 
           3  16   .40   40    28      70 
       2    8   .20   20    12      30  
       1    4   .10   10      4      10 
 

cf  = cumulative frequency 
c% = cumulative percentage 

 
Cumulative frequencies (cf) and cumulative percentages (c%) simply cumulate the 
data from lowest score to highest score.  Starting at the lowest value, add the frequencies 
from the first and second X values to arrive at the cumulative frequency for the second X 
value. (We are showing the lowest score at the bottom of the frequency table, but 
sometimes it is displayed at the top.) 
 
Thus to calculate the cumulative frequency of value 2, you add 4 (Frequency of “1”)  + 
8 (Frequency of  “2”) = 12.  So, the cumulative frequency of value 2 is 12.  This tells us 
that 12 people scored a 2 or lower.  You can then add the frequencies from the first, 
second, and third values to arrive at the cumulative frequency of “3”, and so on for all 
values. 
 
You use a similar procedure to arrive at cumulative percentages.  Starting with the 
lowest value, add the percentages from the first and second category to arrive at the 
cumulative percentages for the second value (10% + 20% = 30%).  This tells us that 30% 
of our sample scored a 2 or lower.  Keep using this procedure to find cumulative 
percentages of the other values. 
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Probability and Frequency Distributions 
 
How does probability relate to frequency distributions? 
 
Consider the following frequency distribution of scores from a small population. 
 
 
 
           _______________ 
            X f _p_     
             5  2 .05  
             4 10 .25  
             3 16 .40  
             2  8 .20  
             1  4 .10  
  
 

 

 
Imagine that this population is made up of numbered tokens in a bag, and  that your task 
is to reach in and pull out one token.  The proportion column corresponds to the 
probability of selecting a token (an individual) with a particular value of X.  In the 
frequency histogram graph, this probability is represented as the area under the bars for 
those intervals. 
 

•   What is the probability of selecting (sampling) a token with a 3?   
   
   p (3) = f / N = 16 / 40 = .40 
 

So there are 40 tokens in the bag, 16 of the tokens have a 3 on them. 
 

•   What is the probability of selecting (sampling) a token with a 5?   
 
   p(5) = f / N = 2 / 40 = .05 
 

So if somebody asked you what’s the likelihood of selecting a token with a 5 on it 
you should answer .05 (or 5%). 

 
We can also find the answers to more complex questions. 
 

•   What is the probability of selecting a token with a value greater than 2? 
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 p(X > 2) = ? 
  
.05 + .25 + .40  = .70 

 
 

We simply add the probabilities for each value of X that is less than 2. 
 

•   What is the probability of selecting a token with a value less than 5? 
 
  
p(X < 5) = ?  
 
.10 + .20 + .40 + .25 = .95 

 
 

•   What is the probability of selecting a token with a value greater than 1 & less than 
4? 

 
  
 p(4 > X > 1) = ?  
 
.20 + .40 = .60 

 
 
Graphs 

 
We can also summarize the data with pictures, also known as graphs. 

 
Graphs are pictorial representations of data from which particular characteristics 
of the distribution emerge. 

 
 

We often use the frequency distribution table as our basis for creating 
graphs. Graphs can also be used to get an idea of the shape of the data 
distribution, that is, where are most scores clustered? Graphs and 
tables help us summarize data in a more efficient way than a listing of 
all data points. In this section, we will focus on the use of different 
graphing options. Your choice of how to graph and display your data 
will have something to do with the level of measurement of your 
variables, that is, what scale did you use to measure your variables? 
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Histogram.  A histogram is used when the data are measured on an interval or a ratio 
scale. For a histogram, vertical bars are drawn above each score so that:  
 
o   The height of the bar corresponds to the frequency. 

 
o   The width of the bar extends to the real limits of the score (there are no spaces 

between the bars). 
 

Notes: 
 

§   For a continuous variable, each score actually corresponds to an interval on 
the scale. The boundaries that separate these intervals are called real limits. 
The real limit separating two adjunct scores is located exactly halfway 
between the scores. 
 

§   Each score has two real limits, one at the top of its interval called the upper 
real limit, and one at the bottom of its interval called the lower real limit. 

 
§   The upper real limit of one interval is also the lower real limit of the next 

higher interval. 
 
A histogram of the temporal discounting scores we previously looked at: 

 Horizontal bar (the X axis or abscissa) – the values of X 
 Vertical bar (the Y axis or ordinate) – the frequency value 

 
 
 
 
 
                         
 
                 
      10    11   12   13   14    15   16   17   18    19   20 

 
 

 
Bar Graph. A histogram and bar chart are very similar, but a bar graph is used when the 
data are measured on a nominal or an ordinal scale. For a bar graph, a vertical bar is 
drawn above each score (or category) so that: 
 
o   The height of the bar corresponds to the frequency 
o   There is a space separating each bar from the next. 
 
The following bar graph represents the distribution of personality types in a sample of 
Introduction to Psychology students. Because personality type is a discreet variable 
measured on a nominal scale, the graph is drawn with space between the bars. 

 

Temporal Discounting Scores 

Frequency 
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Line Graph. (a frequency distribution polygon). A line graph is used when the data are 
measured on an interval or a ratio scale. In a line graph a single dot is drawn above each 
score so that: 
 
o   The dot is centered above the score 
o   The height of the dot corresponds to the frequency 
o   A continuous line is then drawn connecting these dots 
The following line graph represents the scores on an Introduction to Psychology quiz. 
Because the grading scale is set up on an interval scale, the data can be viewed as a line 
graph. 

 

 
 

 
The Shape of a Frequency Distribution 
 

When you look at a frequency distribution graph, you might have questions about 
the shape of the distribution. That is, is there an equal spread of scores across all possible 
values or did most people score at the high or low end of the scale? Nearly all 
distributions can be classified as being either symmetrical or skewed:  
  

Symmetrical (bell-shaped). In a symmetrical distribution it is possible to draw a 
vertical line through the middle so that one side of the distribution is an exact 
mirror image of the other.   
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Skewed. In a skewed distribution, the scores tend to pile up toward one end of the 
scale and taper off gradually at the other end. Most scores will fall at one end of 
the scale and only a few scores at the opposite end of the scale. 

 
 
 
 
 
 
Positively Skewed. The tail extends 
toward the positive or higher end of the 
scale. Most scores are low, fewer are 
high.  
 

Negatively Skewed. The tail extends 
toward the negative or lower end of the 
scale. Most scores are high, fewer are 
low. 

Let’s see if you are able to determine the shape of the distribution of various frequency 
distribution graphs! 
 

•   Looking back at the bar graph of the frequency of personality types in a sample of 
Introduction to Psychology students, what shape is the distribution? Most scores 
are toward the high end so the distribution looks like it is negatively skewed. 

 
•   Now look at the line graph of the scores on an Introduction to Psychology quiz., 

what shape is this distribution? More scores are on the low end so this distribution 
looks like it is positively skewed 

 
Probability and Frequency Distributions 
 
How does probability relate to frequency distributions? 
 
Consider the following frequency distribution of scores from a small population. 
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           _______________ 
            X f _p_     
             5  2 .05  
             4 10 .25  
             3 16 .40  
             2  8 .20  
             1  4 .10  
  
 

 

 
Imagine that this population is made up of numbered tokens in a bag, and  that your task 
is to reach in and pull out one token.  The proportion column corresponds to the 
probability of selecting a token (an individual) with a particular value of X.  In the 
frequency histogram graph, this probability is represented as the area under the bars for 
those intervals. 
 

•   What is the probability of selecting (sampling) a token with a 3?   
   
   p (3) = f / N = 16 / 40 = .40 
 

So there are 40 tokens in the bag, 16 of the tokens have a 3 on them. 
 

•   What is the probability of selecting (sampling) a token with a 5?   
 
   p(5) = f / N = 2 / 40 = .05 
 

So if somebody asked you what’s the likelihood of selecting a token with a 5 on it 
you should answer .05 (or 5%). 

 
We can also find the answers to more complex questions. 
 

•   What is the probability of selecting a token with a value greater than 2? 
 
    
 p(X > 2) = ? 
  
.05 + .25 + .40  = .70 

 
 

We simply add the probabilities for each value of X that is less than 2. 
 

•   What is the probability of selecting a token with a value less than 5? 
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p(X < 5) = ?  
 
.10 + .20 + .40 + .25 = .95 

 
 
 

•   What is the probability of selecting a token with a value greater than 1 & less than 
4? 

 
  
 p(4 > X > 1) = ?  
 
.20 + .40 = .60 

 
 
 
 
 Practice	  Questions:	  Set	  4	  

 
 

 (1)	   Create	   a	   frequency	   table	   including	   the	   range	   of	   responses,	   frequency,	  
proportion,	  percentage,	  cumulative	  proportion,	  and	  cumulative	  frequency	  for	  the	  
following	  data	  illustrating	  the	  number	  of	  correct	  responses	  on	  a	  quiz:	  
	  

1,	  4,	  3,	  2,	  3,	  4,	  5,	  2,	  3,	  5,	  5,	  3,	  2,	  1,	  4,	  3,	  2,	  3,	  1,	  3,	  4,	  3,	  2,	  4	  
	  
(2)	  What	  percentage	  of	  students	  scored	  a	  3	  or	  lower	  on	  the	  quiz	  in	  Question	  2?	  

	  
(3)  Draw	  a	  line	  graph	  of	  the	  data	  from	  Question	  2.	   	  What	   is	  the	  shape	  of	  this	  

distribution?	  
	  
ANSWERS	  ON	  P.	  149	  
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Chapter 6: Central Tendency 
 
 
The goal of descriptive statistics is to summarize a distribution of scores (or categories, 
but most of this discussion is about numerical scores). The common way to do this is to 
find a single score that best represents the entire set of scores that you are looking at. 
Central Tendency is a statistical measure that identifies a single score as representative 
of an entire distribution. The goal of central tendency is to find the single score that is 
most typical or most representative of the entire group. Central tendency is a useful 
measure because a single score is much easier to understand than a large set of scores. 
Before you read on about the different types of central tendency, try to identify the single 
value that is most representative of each distribution below. 
 

             1     2     3     4      5      6                    1   2    3    4   5    6   7   8 
 
 
As you can see it is hard to locate one single score that represents both of the 
distributions. This is why there is not just one procedure for determining central 
tendency. Instead, there are three different methods for determining central tendency: the 
mean, the median, and the mode. The shape of a distribution and the type of variable 
you are measuring determine when you use which method of central tendency.    
 
The Mean 
 
The mean is the arithmetic average of all the scores in the distribution.  It is the most 
common method of central tendency because it takes every item in the distribution into 
account and is closely related to measures of variability (which we will talk about later).  
For a population, it is identified by the Greek letter for m, which is mu, written as µ, or it 
may identified by an upper-case M. For a sample, it is identified by a lower-case m or 

� 

X  
(pronounced “X-bar”).  (There are different conventions for notations. The most common 
is Greek letters for population parameters, including N for the number of cases, and the 
corresponding Roman letter for sample statistics, including n. Also, statistical symbols 
are often italicized.)  Since it is the arithmetic average, the formula is as following: 
 

 Mean for a population: 

� 

µ = Σ
X

N
 Mean for a sample: 

� 

X = Σ
X

n
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Note: These are the first of many statistical formulas that you must learn. They will all be 
put in shaded boxes and summarized at the end of this text. 
 
For example, consider the sample of n = 5 scores:  3, 4, 5, 6, 7 
 

   

� 

X =
(3+ 4 + 5 + 6 + 7)

5
=
25

5
= 5  

 
The mean has several important properties or characteristics: 
 
•   If you change a given score, add an observation, delete an observation, then the 

mean will change 
•   If you add (or subtract) a constant to each score, then the mean will change by 

adding that constant. 
•   If you multiply (or divide) each score by a constant, then the mean will change by 

being multiplied by that constant. 
 
The Median 
 
The median is the score in the middle of the rest of the score. That is, half of the scores 
are to the right of the median and half are to the left. Thus, the goal of the median is to 
find the midpoint of a distribution of scores. There are different ways to find the median 
depending on whether you have an even number of scores or an odd number of scores. 
 
For example, consider the sample of n = 5 scores: 12, 3, 6, 4, and 10.  
 
Since the sample size is odd, you first list the scores in order from lowest to highest: 
 
      3  4  6  10  12 
 
Then you find the middle score (6) and this is your median. 
 

If the sample size is even like in the following set of scores: 12, 3, 7, 6, 4, and 10 
 
 Again you put the score in order: 
 
     3  4  6  7  10  12 
 
Then you find the 2 middle scores (6 and 7) and add them together and divide by 2. 
 
 Median =   6 + 7   =   6.5 
             2 
 
The median is best to use in the following situations: 
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•   You have extreme scores in a sample or population 
•   You have undetermined values for the variable you are measuring 
•   There is no upper or lower limit for the variable 
•   The variable is measured on an ordinal scale 

 
The Mode 
 
The mode is the most frequently occurring score or category in the distribution.   While 
it can be used for any scale, this is the only measure of central tendency that can be used 
for nominal data.  To find the mode you just need to look for the category or score that 
occurred most often.  For example, 100 Psychology majors were asked to name their 
favorite Psychology course and the results were as following: 
 
   Course     f  
 Introduction   25 
 Abnormal   45 
 Developmental  10 
 Child     5 
 Educational  15   
 
The mode of the distribution of favorite psychology courses is Abnormal Psychology 
since most people picked it as their favorite course.  A distribution can have more than 
one mode.  For example, in the distribution below 2 and 7 would both be modes of 
distribution.  This type of distribution is then termed bimodal.  

 
                     1    2    3                 6    7    8 
 
Relationships between Measures of Central Tendency and Distributions  
 
In a symmetrical distribution the mean = the median = the mode.  The right hand side 
of the distribution is exactly the same size as the left size.  Thus, the median will be 
exactly in the middle of a symmetrical distribution because it is midpoint of a 
distribution.  The mean will also be at the exact middle because averaging a score on the 
left side with the corresponding score of the right side will continually give you the 
middle score.  The mode will also be the middle of the distribution since this is the point 
where the scores occur most often.   
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          Mean = Median = Mode 
 
In a skewed distribution the measures are not all equal to each other.  In a positively 
skewed distribution the peak is on the left side, which is the mode.  The median is to the 
right of the mode, and mean is to the right of the median.  These values are reversed in a 
negatively skewed distribution.  

 
  mode < median < mean       mean < median < mode 
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 Practice	  Questions:	  Set	  5	  
 

 

 (1)	  What	   is	   the	   value	   of	   the	   mean,	   median,	   and	   mode	   for	   the	   following	   set	   of	  
scores?	  

	  	  	  	  	  	  Scores:	  1,	  3,	  5,	  0,	  1,	  3	  
	  
(2)	  In	  a	  sample	  of	  n	  =	  6,	  five	  individuals	  all	  have	  a	  score	  of	  10	  and	  the	  sixth	  person	  

as	  a	  scores	  of	  X	  =	  16.	  	  What	  is	  the	  mean	  for	  this	  sample?	  
	  
(3)	  After	  5	  points	  are	  added	  to	  every	  score	  in	  a	  distribution;	  the	  mean	  is	  calculated	  

and	   found	   to	   be	   30.	   	   What	   was	   the	   value	   of	   the	   mean	   for	   the	   original	  
distribution?	  	  	  

	  
(4)	  For	  a	  perfectly	  symmetrical	  distribution	  with	  m	  =	  30,	  the	  median	  would	  have	  a	  

value	  of	  ___?	  
	  
(5)	  For	  the	  following	  set	  of	  scores,	  identify	  which	  measure	  would	  provide	  the	  best	  

description	  of	  central	  tendency	  and	  explain	  your	  answer.	  
	   Scores:	  0,	  30,	  31,	  33,	  33,	  34,	  35,	  37,	  38.	  
	  
ANSWERS	  ON	  P.	  150	  
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Study Guide for Exam 1 
 
Terms 

bias 
central tendency 
confound variable 
continuous variable 
control group 
convenience sample 
correlational method 
data 
dependent variable 
discrete variable 
double-blind design 
experimental method 
experimenter bias 
explanatory variable 
histogram 
hypothesis 
independent variable 
inferential statistics 
interval scales 
manipulate 
matching design 
mean 
median 

mode 
nominal scale 
observational study 
operational definition  
ordinal scale 
population 
probability 
quasi-experiment 
random assignment 
random sampling 
ratio scale 
reliability 
response variable 
sample 
sampling techniques 
scientific method 
simple random sample 
statistical significance 
stratified sampling 
subject variable 
validity 
variability 
variable 

 
Formulas 
 
Probability of a score in a distribution 
 
 

Mean for a population: 

� 

µ = Σ
X

N
 Mean for a sample: 

� 

X = Σ
X

n
 

 
 
  

� 

p =
f

N
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Sample problem with Calculation Procedures 
 
You conduct a survey on how much your friends like a website and whether it is related 
to their GPA. Your survey’s response scale runs from 0 = “not like at all” to 5 = 
“absolutely love”. Your sample of 10 has these results for the survey (X): 5, 1, 2, 4, 3, 2, 
4, 3, 0, 3.  
 
a. Display results in a frequency distribution table and a histogram.  
 
Describe each abbreviation in the table: 
f = 
p = 
% = 
cf = 
c% = 
  
        Frequency Distribution Table                      Histogram 
         Shade in the boxes. 
                 Add column headings. 
  X      
        
      
      
      
      
      
S            ?         ?         ? 

      
3 

                        

 
2 

                  

 
1 

                  

             0   1    2     3   4    5 
 
b. Provide the following information about the sample: 
p (X = 3) = 
p (X > 0) = 
p (0< X< 4) = 
p (X > 4) = 
 
c. Find measures of central tendency for the sample: 
Mean =  
Median = 
Mode =  
 
ANSWERS ON P. 152 
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Chapter 8: Variability 
 
 
Since not all scores in a distribution are the same, it is important to objectively describe 
the spread of scores in a distribution. Variability provides a quantitative measure of the 
degree to which scores in a distribution are spread out or clustered together. 
 
•   If scores are clustered close together, then the distribution is said to have small or 

low variability. 
•   If scores are greatly spread out, then the distribution is said to have large or high 

variability. 
•   If all scores are the same, then the distribution has no variability. 
 
For this class we will just concentrate on three measures of variability: the range, the 
variance, and the standard deviation. 
 
Range 
 
The range is the simplest of the measures of variability to calculate. It is the difference 
between the largest (maximum) X value and the smallest (minimum) X value. For 
example, find the highest and lowest quiz score below. 
 
      1, 2, 4, 6, 8, 10 
 
Since 10 is the highest score and 1 is the lowest score, you take 10-1 to find the range, 
which is 9. 
 
There is a downside to the range, which is that it does not take all scores in the 
distribution into account. Compare the range of the first example to range of this spread 
of quiz scores. 
 
      1, 8, 9, 9, 10, 10 
 
As you can tell the range is also 9 in this distribution, but there are differences between 
the two distributions. If these scores represented points on a 10 point quiz, then the 
second distribution has all but one score above 80%, where as the first distribution has a 
wide variety of scores. It is important for a measure of variability to show this difference. 
Since the range is only based on the two most extreme values it cannot capture all scores 
in the distribution. Additionally, it becomes unstable if you repeatedly sample from the 
same population. Thus, the range is an unreliable measure of variability. 
 
Variance and Standard Deviation 
 
The other measures of variability, variance and standard deviation, do take all scores in 
a distribution into account and remain stable after repeated sampling. Thus, these are the 
most popular and most important measures of variability. Standard deviation is the one 
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most frequently reported for a set of scores because it is a more intuitive value, but you’ll 
see later that we can use the variance to calculate some statistical values. The standard 
deviation measures how far off all of the scores in a distribution are from a standard, 
which is the mean of the distribution. The variance is simply the standard deviation 
squared. They are calculated a little differently depending on whether you are measuring 
a population distribution or a sample distribution.  
 
For a Population Distribution 
 
We will now construct a deviation table.  The first step is to find the deviation scores. 
These are calculated by subtracting the mean from each score.  Each deviation score tells 
us how far the score is from the mean.  It is the most important statistic about a score! 
 
Suppose we have a set of population scores: 1, 2, 3, 4, 5. In this case, µ = 15/5 = 3. So we 
need to subtract 3 from each score to get our deviation scores. 

 
 Score    Deviation 

    X      X - µ         
    5    5 -  3 =  2  
    4    4 -  3 =  1 
    3    3 -  3 =  0 
    2    2 -  3 = -1 
    1    1 -  3 = -2  
 
Next you square all the deviations.  This must be done because simply adding them all 
the deviations together will equal out to 0. This is because you are taking one side of the 
distribution and making it positive, and making the other side negative. Thus they will 
cancel each out. To get rid of the positive and negative signs we square the deviations 
and add them up.  The final result is the called the sum of squares (SS).  
 

Sum of squares: SS =

� 

Σ(X − µ)2   
 
  Score   Deviation    Squared Deviation 
    X      X - µ  (X - µ)2     
    5     2    22   
    4     1   12 
    3     0   02 
    2    -1  -12 
    1    -2  -22  
  S     0  10 (SS) 
 
The next step is to find the population variance, which is the average of the squared 
deviations To get this average we need to divide SS by the number of scores or 
individuals in the population (N). The symbol for the population variance is the Greek 
letter equivalent of s, sigma, which is written as s; another notation is upper-case SD. 
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 Variance for a population: 

� 

σ
2

=
SS

N
   

 
To get the standard deviation, we need to correct for all the squared deviation by taking 
the square root of the population variance.  Thus, the standard deviation is the square 
root of the mean squared deviation.   
 

 Standard deviation for a population: 

� 

σ = σ
2

=
SS

N
 

 

From our example above the standard deviation is: 

� 

σ =
10

5
= 2 =1.41 

  
This value 1.41, tells you how much on average each score differs from the mean. 
 
To review:  Step 1:  Compute the deviation and sum of squares (SS) 
        Step 2:  Determine the variance of the population 
        Step 3:  Determine the standard deviation of the population  
 
For a Sample Distribution 
 
The computations for a sample are pretty much the same, but there are different notations 
(Roman letters) for the values because they are statistics instead of parameters.   
 
  s  or sd = sample standard deviation 

� 

X  or m = mean  
 
We also need to adjust the computation to take into account that a sample will typically 
be less variable than the corresponding population. See below.   
 

 
         

� 

X µ 
 
If you have a good, representative sample, then your sample and population means 
should be very similar and the overall shape of the two distributions should be similar. 
However, notice that the variability of the sample is smaller than the variability of the 
population. To account for this the sample variance is divided by n - 1 rather than just 
N.   
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What we’re really doing here is trying to use a sample to make estimates about the nature 
of the population. But since we don’t know things like what is the mean of the 
population, we really cannot measure our deviations from the population standard. So 
what we use is our best estimate of what the population mean is, and that is the sample 
mean. This will be important later in the course when we cover inferential statistics. 
 
So what we’re doing when we subtract 1 from n is using degrees of freedom to adjust 
our sample deviations to make an unbiased estimation of the population values. Programs 
to calculate the standard deviation (calculators, Excel, SPSS, and other spreadsheets) 
usually use the sample formula (n-1). For large Ns, it doesn’t make much difference. 
 
What are degrees of freedom? Think of it this way. You know what the sample mean is 
ahead of time (you’ve got to figure out the deviations). So you can vary all but one item 
in the distribution to keep that same mean. But the last item is fixed. There will be only 
one value for that item to make the mean equal what it does. So n – 1 means all the 
values but one can vary. This is the degrees of freedom for our sample. 
 
For example, suppose you know that the mean of your sample with n = 5 is 5. This means 
that the sum of the scores must be 25. If your first 4 items are 5, 4, 6, and 2 then what 
must the final number be to still have the sum of the scores equal 25? 
 

5 + 4 + 6 + 2 + X = 25 
 
There will be only one value of X that’ll make this work: X = 8.   
 
Let’s do an example of computing the standard deviation of a sample of the following 
scores:  1, 2, 3, 4, 4, 5, 6, 7   
 
Step 1:  Compute the deviations and SS 

            Deviation Table 
 
            Score     Deviation     Squared Deviation 

 X 

� 

(X − X )  

� 

(X − X )
2  

 1 1 - 4 =  -3   9 
 2 2 - 4  = -2   4 
 3 3 – 4 =  1   1 
 4 4 – 4 =  0   0 
 4 4 – 4 =  0   0 
 5 5 – 4 =  1   1 
 6 6 – 4 =  2   4 
 7 7 – 4 =  3   9 
Mean 4    
Sum               0 28 (SS) 

 
Step 2:  Determine the variance of the sample (remember it is a sample so we need to 
take this into account in the formula) 
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  Variance for a sample: 

� 

s
2

=
SS

n −1
  

          
28/7 = 4

 

             
Step 3:  Determine the standard deviation of the sample 
 

  Standard deviation for a sample: 

� 

s = s
2

=
SS

n −1
 

 

                 

� 

s =
28

7
= 4 = 2 

 
Properties of the Standard Deviation (Transformations) 
 
1) Adding a constant to each score in the distribution will not change the standard 
deviation. 
 

For example, if you add 2 to every score in the distribution, the mean changes by 
2, but the variance stays the same (notice that none of the deviations would 
change because you add 2 to each score while the mean changes by 2) 

 
2) Multiplying each score by a constant causes the standard deviation to be multiplied by 
the same constant. 
 

For example, suppose your mean is 20 and that two of the scores in your 
distribution are 21 and 23. If you multiply 21 and 23 by 2 you get 42 and 46, and 
the mean also changes by a factor of 2 and is now 40. Before your deviations 
were (21 - 20 = 1 & 23 –20 = 3). Now your deviations are (42 – 40 = 2 & 46 – 40 
= 6). So your deviations got twice as big just as your mean got twice as big.  

  



 

49  

 Practice	  Questions:	  Set	  6	  
 

 

 (1)	  In	  a	  population	  of	  N	  =	  10	  scores,	  the	  smallest	  score	  is	  X	  =	  8	  and	  the	  largest	  score	  
is	  X	  =	  20.	  	  The	  range	  of	  the	  population	  is	  ____.	  

	  
(2)	   A	   sample	   of	   n	   =	   5	   scores,	   the	   mean	   is	   20	   and	   s2	   =	   4.	   	   What	   is	   the	   sample	  

standard	  deviation?	  
	  
(3)	  A	  population	  of	  scores	  has	  a	  mean	  of	  50	  and	  standard	  deviation	  of	  12.	   	   If	  you	  

subtract	   five	  points	   from	  every	  score	   in	  the	  population,	   then	  the	  value	  of	   the	  
new	  standard	  deviation	  will	  be____.	  

	  
(4)	  What	  is	  the	  value	  of	  SS	  for	  the	  following	  scores?	  
	   Scores:	  1,	  1,	  1,	  3	  
	  
(5)	  Compute	  the	  SS,	  variance,	  and	  standard	  deviation	  for	  the	  following	  population	  

of	  scores.	  
	   Scores:	  9,	  1,	  8,	  6	  
	  
ANSWERS	  ON	  P.	  153	  
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Chapter 9: z-scores 

 

Descriptive statistics, like the mean and standard 
deviation, describe distributions by summarizing the 
center (central tendency) and spread (variability). While 
this isn't every detail about a distribution, it does give us 
a pretty good picture of what the distribution looks like.  

For most bell-shaped curves (e.g., symmetrical and 
unimodal), the mean should be at the mid-point and the standard deviation should be 
somewhere half way between the mean and the most extreme values.  

Our goal is to be able to find our raw scores within the distribution, and to be able to 
describe where it falls.  

Locating a Score 
Where is our raw score within the distribution? 
 
A good point of reference is the mean (since it is usually easy to find). So a natural 
choice for describing the location of a data point would be the deviation score, which is 
found by subtracting the mean from the score (X - µ). 
 
•   The direction is indicated by the negative or positive sign on the deviation score 
•   The distance from the mean is the value of the deviation score 
 

If we are only concerned about a single distribution, then this seems to be pretty easy to 
do. But, if we want to compare two scores from two distributions, then the situation gets 
much harder. Consider the following situation 

 
Example 
 
You take the ACT test and the SAT test. You get a 25 on the ACT and a 620 on the 
SAT. The college that you apply to only needs one score. Which do you want to send 
them (that is, which score is better, 25 or 620)? 
 
It is hard to do a direct comparison here because the two distributions have different 
properties: different means, and different variability.  

 
How might we go about it?  
o   Look at the distribution graphs, locate the scores and compare -- still hard to 

tell.  
o   Think about cumulative percentiles and percentile ranks -- this might work.  
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o   Try and take the deviations and standard deviations into account -- lets try 
this out! 

 
Remember our example: you got a 25 on the ACT and a 620 on the SAT and you 
want to know which score is better. The population means and standard 
deviations for the ACT and SAT are provided. 

 
ACT:  Mean = 21, SD = 3, X =25 

Deviation = 25 – 21 = 4 
Then divide the deviation by the SD = 4/3 = 1.33 
Your ACT score is 1.33 SD above the mean 

 
SAT:  Mean = 500, SD = 100, X = 620  

Deviation = 620 – 500 = 120 
Then divide the deviation score by the SD = 120/100 = 1.20 
Your SAT score is 1.20 SD above the mean 
 

With this information, it is now easy to see which score is better!  The ACT score is 
1.33 SD above the mean, but the SAT score is only 1.20 SD above the mean, making 
the ACT score the better than the SAT score.  
 

The comparison that we just did produced z-scores! They are discussed below. 
 
Standardized Distribution 

So to be able to make comparisons, one approach would be to transform both 
distributions into a standardized distribution.  

A standardized distribution is composed of transformed scores that result in 
predetermined values for the mean and standard deviation, regardless of their values for 
the raw score distribution. Standardized distributions are used to make dissimilar 
distributions comparable.  

In other words, we need to convert the two distributions into a form that allows us to 
make a comparison. For example, we can transform these data into z-scores. That is what 
we'll do: convert every score in the distribution into a standardized score, making the 
overall distribution standardized.  

A standard score is a transformed score that provides information about its location in a 
distribution. A z-score is an example of a standard score.  

A z-score specifies the precise location of each X value within a distribution. The sign of 
the z-score (+ or -) signifies whether the score is above the mean or below the mean. The 
numerical value of the z-score specifies the distance from the mean by counting the 
number of standard deviations between X and the mean. 
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For z-scores, the mean of the distribution is always 0 and the standard deviation is 
always 1.  

µ = 0 
s = 1 

 
 
 
 
 
 
         -1       0      +1 
 
So for a z-score of 1, the data point is exactly 1 standard deviation away from the mean. 
If it is a positive 1, it is 1 standard deviation above the mean; if it is a negative 1, then it is 
1 standard deviation below the mean. 
 
How do we do this transformation? 
 
 For a score in a population   For a score in a sample 
 

     z –score: 

� 

z =
X − µ

σ
     z –score: 

� 

z =
X − X 

s
 

                     

We are using the population formula for our examples, which are based on standardized 
scores with known population parameters. However, note that Excel and SPSS (and other 
programs and calculators) always use the sample formula for z-scores. 

Now let's return to our ACT and SAT example. Notice what we did there: we subtracted 
the distribution means from the scores, and then we divided by their standard deviations. 
In other words what we did was transform them into z-scores. And then we made the 
comparisons based on those z-scores.  

We can transform any and all observations or values from a distribution to a z-score if we 
know either the µ and s, or 

� 

X  and s.  

We can also transform a z-score back into a raw score if we know the mean and standard 
deviation information of the original distribution. Let's look at the algebra to get from 
solving when z is unknown to solving when X is unknown. 

z = (X - µ)      à       (z)(s) = (X - µ)      à      X = (z)(s) + µ   
                     s 
  

   1 
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So suppose that you know somebody else who said that they got 2 SD above the mean on 
the SAT.  How would we go about figuring out their score?  
 

•   2 SD above = z of 2.0  
•   We know that the mean of SAT = 500, and the SD = 100, so we just plug in 

the numbers:  X = (z)(s) + µ = (2)(100) + 500 = 200 + 500 = 700  
 
Properties of the z-score distribution 

Shape - the shape of the z-score distribution will be exactly the same as the original 
distribution of raw scores. Every score stays in the exact same position relative to every 
other score in the distribution.  

Mean - when raw scores are transformed into z-scores, the mean will always = 0.  

        In the examples, enter the mean as the X score. 

� 

z =
X − µ

σ
  
µ = 100, s = 10; z = (100 - 100) / 10 = 0 
µ = 200, s = 10; z = (200 - 200) / 10 = 0 
µ = 100, s = 20; z = (100 - 100) / 20 = 0 

Standard deviation - when any distribution of raw scores is transformed into z-scores 
the standard deviation will always = 1.  

       In the examples, enter (mean +1 SD) as the X score. 

� 

z =
X − µ

σ
  
µ = 100, s = 10; z = (110 - 100) / 10 = 1 
µ = 200, s = 10; z = (210 - 200) / 10 = 1 
µ = 100, s = 20; z = (120 - 100) / 20 = 1 
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In other words: The transformation procedure really is just a way of re-labeling the axis 
of the distribution. So imagine that you leave the curve alone, but just draw new labels on 
the X-axis centering it on 0 and making each SD interval equal to 1.  

Example: µ = 100, s = 50                                 
 
 
 
 
 
 
                       
                      50    100    150                  -1      0        +1 
 
 

XMean  = 100    zMean  = 100 – 100 = 0 
                     50 
 

X +1SD  = 150    Z +1SD  = 150 – 100 = +1 
                                    50 

X -1SD  =  50    Z -1SD  = 50 – 100 = -1 
                                    50 

  

Transformation 
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Chapter 10: Normal Distributions 
 

 
Normal Distributions 
 
A normal distribution is a mathematical curve that provides a good model of relative 
frequency distributions found in behavioral research.  In other words, it is a theoretical 
curve (generated by a formula) that provides a good fit to empirical findings.  
 
 The Normal distribution is a commonly found distribution that is symmetrical and 
unimodal.  
 
 
 

 
 
 
 
 
 
 
 
                                          -2     -1                   +1    +2 
 
 
Properties of a Normal Distribution 
 

•   UNIMODAL: the most frequently observed value of X is that value of X 
falling exactly at the mean of the distribution. 
 

•   BELL-SHAPED curve 
 

•   SYMMETRICAL about its mean. The scores above the mean form a mirror 
image of the distribution of scores below the mean 

 
•   MEAN, MODE, and MEDIAN of the distribution are the same 
 

Other Technical Properties Normal Distributions 
 

•   Not all unimodal, symmetrical curves are normal, but a lot are. 
 

•   We’ll assume that distributions we discuss are normal, and we won’t worry 
about how close a distribution is to normal. 

 

µ  
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•   A smooth curve like that above is referred to as a density curve and calculus 
(which we won’t do) can solve for the percentage of areas under it. 

 
•   The area of segments under any density curve must sum to 1. This is 

consistent with proportions of frequency distributions totaling 1. 
 
Normal distribution and z-scores 
 
Like any other set of scores, the normal distribution can be transformed into z-scores.  
Calculus can solve for the proportion or percentage of the curve between any set of z-
scores or beyond any z-score (that is, in the tail). Here are percentages for three 
prominent segments of the normal distribution. 
 

•   34.13% of scores fall between µ and 1 SD. 
•    
•   13.59% of scores fall between 1 SD and 2 SD.  
•    
•   2.28% of scores fall between 2 SD and 3 SD. 
 
 

 

Fortunately, we don’t have to figure out these percentages. An important tool in statistics 
is a table that provides such proportions. One such table is the Unit Normal Table.  It 
provides solutions for z-scores of all the segments of a normal curve, that is, the area 
under the curve (and thus the probability of sampling) for that segment. There is one at 
the end of this reading packet, and others can be found in any statistics book. 
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Using the Unit Normal Table 

Below is a portion of the table on pages 134-135. The first column is the z-score in 
question, which can be + or -.  The rest of the columns give the proportion of the 
distribution beyond the z-score (the tail). The headings of the columns are the second 
decimal digit of the z-score (e.g., 1.00, 1.01, etc.).  

  
 
 
 

 
 
 

 
 
 
 
 
   
 
 
 
A. How to find the probability of a more extreme z-score (of being in a tail) from the 

Unit Normal Table. (This is what we will be doing in the rest of this course.)  
 

Step 1: Sketch the distribution, showing the mean and standard deviation. 
 
Step 2: Sketch the score (X) in question, being sure to place it on the correct side 

of the mean and roughly the correct distance from the mean. 
 
Step 3: Read the problem again to see if you need the probability of getting a 

score greater than (>) or less than (<) X. Shade this area on your sketch. 
 
Step 4: Translate the score (X) into a z-score. 
 
Step 5: Look up the z-score in the first column and go across to the column for 

the second decimal place and find the probability. 
 

Examples: 
What is the probability of having an IQ of 85 or less?    

p (X < 85) 
For IQ scores, µ = 100, s =15  
z = (85 - 100)/15 = -1.0 

.5040 
: 
: 

.1562 
: 
: 

.0222 
: 
: 

.0013 

.5000 
: 
: 

.1587 
: 
: 

.0228 
: 
: 

.0013 

    0 
: 
: 

1.0 
: 
: 

2.0 
: 
: 

3.0 

 .01     .00 z 

At z = 1, 15.87% of the distribution lies in the tail beyond 
it (to the right if +1 or to the left if –1).

µ   -1 

.1587 

+1 

.1587
%%% 
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Look up (-)1.00 in the tableà  
p = 0.1587 

 
What is the probability of having an IQ of 145 or above? 

p (X > 130)  
For IQ scores, µ = 100, s =15 
z = (145 - 100)/15 = 3.0 
Look up 3.00 in the tableà 
p = 0.0013  

 
B. How to find the z-score for a probability of being in the tail:  
 

Step 1: Sketch the normal distribution. 
 
Step 2: Shade the region corresponding to the required probability. 
 
Step 3: Find the number closest to the probability in the body of the table. 
 
Step 4: Go across to the first column to find the z-score having this probability. 
 
Step 5: If needed, compute the corresponding raw score (X) from the z-score.  

 
Example:  
What IQ score do you need to have to be in the top 5% of the population?  

The upper-tail is needed.  
p = 0.05  
Look in the body of the table for the number closest to 0.0500 and go 
across to the first column à 
z = 1.65(or 1.64) 
Compute X = (1.65)(15) + 100 = 124.75 

 
C.  How to find the probability that X will fall between two scores (rather than 

above a score or below a score, as in A). 
  

Step 1: Sketch the curve and shade the region of interest. 
 
Step 2: Translate both scores to z-scores. 
 
Step 3: Look up the probabilities of scoring < or > each of the two z-scores. 
 
Step 4: Add (or subtract) the probabilities accordingly. 
 
Example:  
What is the probability of scoring between 300 and 650 on the SAT?  

For SAT scores, µ = 500, s =100 
z = (650 -  500)/100 = 1.5 
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Look up in table p (z  > 1.5) à 0.0668 (upper tail to exclude) 
z = (300 - 500)/100 = -2.0 
Look up in table p (z  < -2.0) à 0.0228 (lower tail to exclude) 
Compute p (-2.0  >  z  < 1.5) = 1 - 0.0668 - 0.0228 = 0.9104 
      

D. How to find the probability that X lies outside two points (the complement of C). 
 

Example:  
What is the probability of scoring lower than 300 or higher than 650 on the SAT?  

Same as above, but add the two probabilities together  
p (-2.0 < z > 1.5) = 0.0668 + 0.0228 =.0896.  
(Note that this probability and that in C add to 1.0 because they comprise 
the entire distribution.)  

 
E. How to find percentile ranks and interquartile ranges.  
 

Examples:  
What is the interquartile range for the SAT?    

For SAT, µ = 500, s =100 
Look up in the probabilities of 0.25 and 0.75 
0.25  à z-score = -0.67  
0.75 à z-score = +0.67 
X = z(s) + µ  
    = (-.67)(100) + 500 = 433 
    = (+.67)(100) + 500 = 567 
IQR = 567 - 433 = 134 

 
What is your percentile rank if you have an IQ of 130?  

For IQ, µ = 100, s =15 
z = (130 - 100)/15 = 2.0 
Look up in the table , for z = 2.0 à  
p = 0.9772 or percentile rank or 97.72 

 
(There is a short cut for figuring out the IQR. Since the range is always + .67(s), then 
you can compute the IQR as being (2)(.67)(µ).  Example: for SAT: (2)(.67)(100) = 134.) 
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 Practice	  Questions:	  Set	  7	  
 

 

 Use	  the	  following	  means	  and	  standard	  deviations:	  for	  ACT,	  �	  =	  21,	  �	  =	  3	  
and	  for	  SAT,	  �	  =	  500,	  �	  =100.	  
	  

(1)  You	  take	  the	  ACT	  test	  and	  the	  SAT	  test.	  You	  get	  a	  24	  on	  the	  ACT	  and	  a	  660	  
on	  the	  SAT.	  The	  college	  that	  you	  apply	  to	  only	  needs	  one	  score.	  Which	  do	  
you	  want	  to	  send	  them	  (that	  is,	  which	  score	  is	  better,	  24	  or	  660?).	  Why?	  
	  

(2)  What	  is	  the	  probability	  of	  having	  an	  ACT	  score	  of	  20	  or	  less?	  	  	  
	  

(3)  What	   SAT	   score	   do	   you	   need	   to	   have	   to	   be	   in	   the	   top	   15%	   of	   the	  
population?	  

	  
(4)  What	  is	  the	  probability	  of	  scoring	  between	  500	  and	  650	  on	  the	  SAT?	  

	  
(5)  What	  is	  your	  percentile	  rank	  if	  you	  have	  an	  ACT	  of	  25.5?	  

	  
ANSWERS	  ON	  P.	  154	  
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Chapter 11: Scatterplots & Correlations 
 
 
Correlation 
 
So far we've looked at how single variables act. However, we are often interested in how 
two (or more) different variables may be related to one another, that is, how they act 
together.  
 
Correlation is a statistical technique that is used to measure and describe a relationship 
between two variables. Usually the two variables are observed as they exist naturally in 
the environment; there is no attempt to control or manipulate the variables.  
 
Sometimes we are interested in whether there is a relationship between variables, but we 
don't plan to make any causal claims. That is, we aren't planning on making any 
conclusions like "X causes Y", but instead want to say something like "X and Y are 
related".  If so, we can predict a person’s score on one variable by knowing their score on 
the other one. A familiar example is weight and height. 

However, suppose we are interested in the determinants of a person's height, that is, what 
makes a person tall, average height, or short. Here, a person's height is known as the 
outcome variable.  It is the variable that we are interested in predicting or explaining.  
The other type of variable is a predictor variable.  Here, we should think of all of the 
variables might influence or explain height.  Let's consider the following partial list: 

•   Average of your parent's height  
•   Your current age  
•   Your gender  
•   Your weight  

All of these variables are predictor variables because they are potential causes or 
influences on our response variable (your height). Notice that we can establish a value for 
each variable for each individual.  (Remember how in SPSS we can code gender with 
numerical values.) 

Regardless of whether we want to establish a causal relationship, there are steps to follow 
in examining any relationship between two variables: 
 

•   Make a scatterplot 
•   Look for overall patterns and deviations from those patterns 
•   Compute the Correlation Coefficient (r) 
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Scatterplots 
 
In a scatterplot (also called a scattergram), you put two variables onto the Y and X axes, 
that is, you plot one variable against the other.  Unless you have specified one as 
independent and one as dependent, it doesn’t matter which variable is be on the x axis 
and which variable is on the y axis.  If you have done specified variables, the independent 
one goes on the x axis and the dependent one goes on the y axis.  Each point represents 
a case or person; the point is the intersection of the person’s scores on the two variables.  
Imagining a line through the complete set of points is useful for seeing important features 
of the relationship. 
 

Form of the relationship  
We will focus on linear correlations (straight lines), but there are also other forms 
that the relationship can take. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
  
 
 
 
 

Linea
r Non-linear  
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Direction of the relationship 
  
Positive correlation means that the two variables tend to move in the same direction. 
That is, as one gets larger, so does the other. 
 
Negative correlation means that the two variables tend to move in opposite 
directions. That is, as one gets larger, the other gets smaller. 
  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
Positive                         

•   X & Y vary in the same direction 
•   As X goes up, Y goes  
•   Positive Pearson’s r  
•   If we form quadrants by drawing 

lines through means of X & Y, 
most points are in the 1st & 3rd 
quadrants (more on this in class) 

 
Negative  

•   X & Y vary in opposite directions  
•   As X goes up, Y goes down 
•   Negative Pearson’s r 

•   If we form quadrants by drawing 
lines through means of X & Y, 
most points are in the 2nd & 4th  
quadrants (more on this in class) 
 

Y 

X 

Y 

X 
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Degree of the relationship 
 
A correlation also measures the strength of the relationship between X and Y.  
A correlation will have a value between -1 and +1.  

o   0 means there is no relationship; for each value of X, the best estimate of 
Y is the mean of Y (so knowing X adds no information)  

o   +1 means there is a perfect positive correlation; for each value of X, an 
exact value of Y can be predicted.  

o   -1 means there is a perfect negative correlation; again, for each value of X, 
an exact value of Y can be predicted.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Strength of the Relationship 
 
The further from zero, the stronger the relationship. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

r  =  -1.0  
perfect  negative  
correlation  
  

r  =  0.0  
no  relationship  
 

r  =  1.0  
perfect  positive  
correlation  
  

r  =  -0.75  

Relation  A  

r  =  0.40  

Relation  B  
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Which relationship is stronger?  Relation A is stronger because it is further from zero 
than relation B.  Remember, the further from zero the stronger the relationship. 
 
 
Why do we use correlations? 
    

Prediction: If we know that two variables are strongly related, then we may be able 
to predict the value of one based on the value of the other.  
 
Example: If you know that ultrasound measurements of a baby's head are positively 
correlated with birth weight, then you can make an educated guess of the baby's birth 
weight by measuring the baby's head from an ultrasound. 
  
Validity: If you develop a new test (TEST A) for X, and you want to know whether it 
is truly measuring X, then you can see if TEST A correlates with things that you 
already know correlate with X.  
 
Example: If you discover a new formula for predicting birth weight (imagine some 
magic formula that includes the height and weight of the mother and father 
combined), then this formula should also correlate with the ultrasound estimates of 
birth weight.  
 
Reliability: If you use the same test twice on the same individuals, you can correlate 
the two sets of scores. If the test is reliable, then it should give similar results both 
times, giving you a high correlation between time 1 and time 2.  
 
Theory Verification: Many theories will predict that a relationship exists between 
different variables. So you can then go out, collect some data, and see if such a 
relationship exists.  
 

What does a correlation mean mathematically? 
 
How do we quantify the idea of correlation? There are a number of different correlations; 
we will focus on the most common measure, the Pearson product-moment correlation, 
represented by the notation, r.  Here is a mathematical definition. 

r     =   degree to which X and Y vary together                                                                
degree to which X and Y vary separately 

 r    =   __covariability of X and Y   ___ 
            variability of X and Y separately  

You should be able to understand this better later in the course, but here is the beginning 
of an explanation. Correlation or covariation means that as X changes, Y also changes. 
Remember that a perfect correlation is r = 1.0 (or -1.0). So, in the above formulas, if r = ± 
1.0, then the numerator must equal the denominator. On the bottom, we have two things, 
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how much does X change and how much does Y change irrespective of each other. On 
the top we have, how much X and Y change together.  If their covarability is the same as 
their separate variability, then we can predict how much X changes when we know how 
much Y changes (or vice versa).  As the covariability gets smaller, our ability to predict 
the changes in Y given the changes in X (or vice versa) gets less and less. If there is no 
covariability, the numerator is 0, and r = 0.  

 
Computing Pearson’s r (SS formula) 
 
We need to construct a bivariate deviations table.  It includes deviations for X and for Y 
as well as their joint variability. 
 
Step 1. Variability of X and Y separately: We’ll use the Sum of Squares as a measure of 

variability for X and for Y, just as we did when we calculated the variance and 
standard deviation. 

 
SSX = , where  is the mean of X values 

  
Step 2. Covariability of X and Y: We’ll be computing something new, cross-products 

and the Sum of the Products (SP). Note that SP is analogous to SS, where 
deviations are multiplied by themselves; here deviations of X are multiplied by 
deviations of Y. These are referred to as cross-products. 

 
Sum of the Products:    
 

Bivariate Deviations Table: Positive r 
 

 X      Y                     
  0      1  -6       36   -1     1   6 
10      3  +4       16  +1     1   4 
  4      1  -2         4   -1     1   2 
  8      2 +2         4     0     0   0 
  8      3 +2          4  +1     1   2 

Mean   6      2 
S 30     10   0       64 (SSX)    0     4 (SSY)        14 (SP) 
 
Step 3. Compute Pearson’s Correlation Coefficient by inserting the above numbers we 

found for SSX, SSY, and SP. 
 

Pearson’s =  

 
This indicates that there is a fairly strong positive correlation: as X goes up we 
can predict that Y will too. Notice that all of the cross-products are positive 
because the X- and Y-deviations were either both positive or both negative. This 
results from their both being above their respective means or both below them. 

� 

Σ(X − X )2

� 

X 

� 

SP = Σ(X − X )(Y −Y )

� 

(X − X )

� 

(X − X )2

� 

(Y −Y )

� 

(Y −Y )2

� 

(X − X )(Y −Y )

� 

r = SP
SSX SSY

� 

14
64 * 4

= 14
16

= 0.875
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Chapter 12: Correlations, continued 
 
 

Computing different values of r using the deviations method 
Fortunately, we do not have to go through the tedious calculation of r-values; Excel, 
SPSS, and advanced calculators do it for us. However, going through the calculation 
process helps in understanding how the correlation formula works.  We’ll now consider a 
negative correlation. We will start with the same data set above but change Y values so 
there are in the opposite direction of their paired X value with the constraint that the Y 
mean be unchanged.  Changed numbers are in italics. 

 
Bivariate Deviations Table: Negative r 

 
 X      Y                     
  0      4  -6       36  +2    4    -12 
10      0  +4       16   -2    4     -8 
  4      2.5  -2         4  +0.5    0.25     -1 
  8      1.5 +2         4    -0.5    0.25     -1 
  8      2 +2          4    0    0      0 

Mean   6      2 
S 30     10   0       64 (SSX)    0    8.5 (SSY)   -22 (SP) 

 

 

 
Notice that now all the cross-products are negative (or zero). For every X that is below 
its mean the corresponding Y is above its mean, and for every X above its mean the 
corresponding Y is below its mean.  SP is negative, which determines the sign of the 
correlation coefficient.  The r-value is a little higher because we made sure all the Ys 
were similar in their deviations, just in the opposite direction. 
 
As correlations approach 0, cross-products will have a mix of positive and negative 
values.  Again, we will change Y values with the constraint that the Y mean be 
unchanged. 
 

Bivariate Deviations Table: r = 0 
 

 X      Y                     
  0      2  -6       36    0    0       0 
10      0  +4       16   -2    4      -8 
  4      1.5  -2         4   -0.5    0.25       1 
  8      2.5 +2         4   +0.5    0.25       1 
  8      4 +2          4     2    4       4 

Mean   6      2 
S 30     10   0       64 (SSX)    0    8.5 (SSY)    -2 (SP) 

€ 

(X − X )

€ 

(X − X )
2

€ 

(Y −Y )

€ 

(Y −Y )
2

€ 

(X − X )(Y −Y )

� 

= −22
64 *8.5

= −22
23.3

= −0.94
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(X − X )
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(X − X )
2
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(Y −Y )
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(Y −Y )
2
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(X − X )(Y −Y )
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Notice how the cross-products cancel each other out so that SP is close to 0. 
 
Finally, as correlations approach 1, X- and Y-deviations become more and more alike. 
When the correlation = 1, SSX, SSy, and SP are the same.  
 

Bivariate Deviations Table: r = 1 
 

X      Y                     
  0     0.5  -6       36  -1.5     2.25   9 
10     3.0  +4       16  +1.0     1.00   4 
  4     1.5  -2         4  -0.5     0.25   1 
  8     2.5 +2         4   +0.5     0.25   1 
  8     2.5 +2          4  +0.5     0.25   1 

Mean   6      2 
S 30     10   0       64 (SSX)    0     4 (SSY)        16 (SP) 

 

 

 
 
Computing r from z-scores 
 
An alternate method of calculating Pearson’s r is with a z-formula. The advantage of this 
method is that both sets of scores are on the same scale, so it is easier to see the 
relationship between deviations. In the example above, it is not immediately apparent 
from the deviations that there is a perfect correlation. The table below has the same data; 
note the z-scores for each XY pair, in italics. They are the same for every X, Y pair! The 
sum of the z-cross-products add up to n-1!  
 

Bivariate z Table: r = 1 
 

X      Y               zX                     zY               zXzY 

  0     0.5  -6    -1.5  -1.5    -1.5   2.25 
10     3.0  +4     1.0  +1.0     1.0   1.00 
  4     1.5  -2    -0.5    -0.5    -0.5   0.25 
  8     2.5 +2     0.5   +0.5     0.5   0.25 
  8     2.5 +2      0.5  +0.5     0.5   0.25 

Mean   6      2 
S 30     10   0     0     0     0   4 
s   4      
 
Formulas for s, z, & SS are needed. 

� 

= −2
64 *8.5

= −2
23.3

= −0.086
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(X − X )
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(X − X )
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(Y −Y )
2
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(X − X )(Y −Y )
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= 16
64 * 4

= 16
16

=1
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(Y −Y )
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Using the above formula for SS, we can get from the deviation formula to the z formula 
for Pearson’s r.  Note in the middle term how the deviations over the standard deviation 
for X and Y resolves to their z-scores over n-1.  In the z-formula, r equals the sum of z 
products as a proportion of the degrees of freedom. The deviations formula and z-scores 
formula for Pearson’s r are equal to one another and therefore calculate the same r-value. 
 
 SS formula    z-formula 

 
 

 
 
 
Here is another example from above, now with z scores. 
 

Bivariate z Table: r = 0 
 

 X      Y                zX                zY     zXzY 
  0      2  -6      -1.5     0     0        0 
10      0  +4       1.0   -2.0   -1.37      -1.37 
  4      1.5  -2      -0.5   -0.5   -0.34       0.17 
  8      2.5 +2       0.5    0.5    0.34       0.17 
  8      4 +2        0.5    2.0    1.37       0.68 

Mean   6      2 
S 30     10   0        0         0      0         -0.345 
s   4      1.46 

 
 
 

 
 
Scatterplots with z-scores 
 
With z-scores, the center of the four quadrants is at 0,0.  Each quadrant has different 
signed values for X and Y: quadrant 1 (+X, +Y), quadrant 2 (-X, +Y), quadrant 3 (-X, -
Y), quadrant 4 (+X, -Y).  The more closely related X and Y, the more similar will be their 
z scores. 
 

€ 

(X − X )

€ 

(Y −Y )

� 

r = SP
SSX SSY

=
∑ X − X ( ) Y −Y ( )

sX sY n −1( )
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r=
Σzxzy
n−1 =−0.345

4
=−0.086

� 

=
Σzxzy
n−1 = 4

4
=1
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How to Interpret Correlations 
 
We’ve already looked at basic properties of correlations: their form (linear or non-linear), 
direction (positive or negative), and strength (none, weak, strong, perfect).  But there are 
some additional issues that we need to consider: 
 

•   Correlations are greatly affected by the range of scores in the data.  
•   Extreme scores (outliers) can have dramatic effects on correlations. 
•   Correlations describe a relationship between two variables, but DOES NOT 

explain why the variables are related.  
 
Correlations are greatly affected by the range of scores in the data 
  
Suppose that in one study we look for a correlation between age and height, but we only 
test 0 to 10 yr olds. In a second study we look for the same relationship, but only test 20 
to 30 yr olds. In the first case we will probably find a strong positive correlation, but in 
the later case we may find a near 0 correlation. 
 
Which correlation is correct? Both are, if considered with respect to the range represented 
in the data. We should conclude that the strong positive correlation exists for a restricted 
range. That is, from years 0 to 10, there is a strong positive correlation between age and 
height. (Note: a non-linear function is appropriate for this relationship). 
 
Extreme scores (outliers) can have dramatic effects on correlations  
 
A single extreme score can dramatically change a correlation and affect the accuracy of 
the correlation. The 5 data points on the left show little relationship, but adding a 6th point 
at the high end of both variables produces a strong overall correlation. 
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            r = -0.05     r = +0.76 
 

 
It is important to observe points in a scatterplot for outliers. Often outliers represent 
erroneous or invalid data. If so, they should be omitted from further analysis. For 
example, there may have been a data entry error or the score may result from partially 
missing data. In such cases, the data do not contribute to our estimate of the relationship 
between the two variables but detract from it and therefore should be excluded. 
 
Correlations describe how, but do NOT explain why, the variables are related  
 

The basic underlying reason for this is that in a correlational study, we, the researchers, 
don't have control. That is, we are not manipulating one (or more) variable(s) while 
keeping everything else constant. As a result, we can't make causal claims. 

 
Examples: 

 
•   Suppose that Dr. Steward finds that rates of spilled coffee and severity of plane 

turbulence are strongly positively correlated.  
 

Correlationally speaking, one might argue that spilling coffee causes turbulence. 
 
•   Suppose that Dr. Cranium finds a positive correlation between head size and digit 

span (digit span is how many digits in order a person can repeat from memory).  
 

Correlationally speaking, one might argue that people with bigger heads have 
bigger digit spans (instead of something like, head size and digit span increase 
with age).  

 
•   Suppose the Dr. Ruth finds a positive correlation between the number of babies 

born and the rate of stork sightings (I believe that such a correlation has been 
reported).  

 
Correlationally speaking, one might interpret this as support for the hypothesis 
that storks bring babies to home. 
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Often what you may find is that there is another variable Z, that causes both X and Y, 
so X and Y may seem causally related, when they aren't. 
 
 
 Practice	  Questions:	  Set	  8	  

 
 

 (1)	  Create	  a	  scatterplot	  based	  on	  the	  following	  data:	  
	  

	  	  	  	  	  Person	  	   	   	  	  	  	  	  	  	  	  Height	   	   Avg.	  Parents	  Height	  
A	   	   	   65	  in	   	   	   68	  in	  
B	   	   	   60	  in	   	   	   64	  in	  
C	   	   	   69	  in	   	   	   70	  in	  
D	   	   	   59	  in	   	   	   65	  in	  
E	   	   	   72	  in	   	   	   67	  in	  

	   F	   	   	   67	  in	   	   	   65	  in	  
	  

(2)	  What	   is	   the	  direction	  of	   relationship	   (positive	  or	  negative)	   in	   this	  scatterplot?	  	  
How	  strong	  of	  a	  relationship	  does	  there	  appear	  to	  be?	  

	  
(3)	  For	  the	  data	  in	  Question	  1,	  find	   ,	   ,	  sx,	  sy,	  SSx,	  SSY,	  SP,	  and	  Σzxzy.	  
	  
(4)	  Now	   compute	   Pearson’s	   Correlation	  Coefficient	   using	   the	   numbers	   found	   for	  

SSX,	  SSY,	  SP,	  and	  Σzxzy.	  
	  
(5)	  Go	  back	  to	  the	  scatterplot	  and	  enter	  z-‐values	  on	  the	  X	  and	  Y	  axes.	  
	  
(6)	   Interpret	   the	   r	   you	   just	   found.	   What	   is	   the	   direction	   and	   strength	   of	   the	  

relationship?	  	  Does	  this	  match	  your	  interpretation	  based	  on	  the	  scatterplot?	  
	  
ANSWERS	  P.	  155 
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Study Guide for Exam 2 
 
Terms 
 

Correlation 
Cumulative percentage 
Extreme scores (outliers) 
Frequency 
Frequency distribution 
Histogram 
Line graph 
Linear relationship 
Negative correlation 
Non-linear relationship 
Normal distribution 
Pearson’s correlation 

coefficient 
Percentage 
Percentile rank 

Positive correlation 
Prediction 
Range 
Scatterplot 
Shape of distribution 
Standard deviation 
Standard scores 
Sum of squares 
Sum of products 
Symmetrical 
Transformations 
Unit normal table 
Variability 
Variance 
z-score 

 
Formulas 
 
Statistic  For a population  For a sample 
 

Variance  
    

 

Standard deviation   
 

 
Sum of squares     S  
 
 

z score       
 
 
Sum of Products   S  
 

Pearson’s correlation coefficient   = 

 

� 

σ 2 = SS
N

� 

s2 = SS
n −1

� 

σ = σ 2 = SS
N

� 

s = s2 = SS
n −1

� 

Σ(X − µ)2

† 

(X - X )
2

� 

z = X − µ
σ

� 

z = X − X 
s
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(X - X )(Y - Y )
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r = SP
SSX SSY

� 

Σzxzy
n−1
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Sample Problem with Calculation Procedures 
 
You conduct a survey on how much your friends like a website and whether it is related 
to their GPA. Your survey’s response scale runs from 0 = “not like at all” to 5 = 
“absolutely love”. Your assignment is to provide all descriptive statistics for the 
following dataset. 
 
Person     Web liking           GPA   Person     Web liking           GPA 
A  5  2.4   F  2  2.1 
B  1  3.9   G  4  3.9 
C  2  3.5   H  3  2.9 
D  4  2.8   I  0  3.6 
E  3  3.0   J  3  2.7 
 
a. Make a scatterplot  of both of your variables by entering the letter of each person 

on the proper place on the graph.  Draw the best fitting line through the set of 
points. 

 
4.0       
3.75       
3.5       
3.25       
3.0       
2.75       
2.5       
2.25       
2.0       
1.75       
1.5       
1.25       

     0     1      2      3      4      5 
 
b. Complete a Bivariate Distribution  and z Table (both deviations and z-scores) to 

get needed values in calculating measures of central tendency, variability, and 
correlation.  (You don’t have to do all of this this, just understand it. We’ll do the 
calculations in Excel in lab.) 

 
Describe each abbreviation in the table: 
X = 
For what formula do you need å(X)? 

= 
What must the total be of å ? 

= 
What is å  and where will you use it? 
What is and where will you use it? 

† 

(X - X )

† 

(X - X )

† 

(X - X )
2

† 

(X - X )
2

† 

(X - X )(Y - Y )
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What is Σzxzy and where will you use it? 
 
 X   zX  Y   zY  zxzy 

           
           
           
           
           
           
           
           
           
           
   å           
Mean           
 
c. Find the following statistics for Xs and Ys. Show formulas and calculations. 
 
    X    Y 
Mode = 
 
Median = 
 
Range = 
 
M = 
 
SS 
 
Variance 
 
SD = 
 
d. Find the following statistics for Xs and Ys together.  Show formulas and 
calculations. 
 
r (SS formula) = 
 
r (z formula) = 
 
ANSWERS ON P. 157 
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III. Drawing Conclusions about Group Differences 
 

 
To this point we’ve discussed the context from which we get our 
numbers, and a variety of methods that allow us to summarize and 
describe the distributions of these numbers.  What we haven’t 
discussed yet is how we interpret the numbers (and the summaries).  
In the final two sections of the course we’re going to learn some 
statistical techniques for drawing conclusions from our data. 
Nearly all of what we discuss in this portion of the course will 

involve a logical framework in which we ask and answer questions based on our data.  
Specifically, we’re going to look at how we test hypotheses about populations using our 
samples and based on the likelihood of certain outcomes in given our sets of data.  The 
first two chapters in this unit (and accompanying classes) are the most important in 
the course; you must fully understand them or you will be lost for the rest of the 
course. 
 
This section will center on using a test statistic called the t-statistic.  It, and the z-
statistic, can be used to decide if there is a difference between two groups. In some cases, 
we compare a sample to a known population.  In others, we compare two samples of 
scores or participants.  We will see how the design of your research study determines 
how you calculate your t-statistic.   
 
The final section will return to the topic of relationship between two variables, but this 
time within the framework of hypothesis testing.  We will extend our discussion of 
correlation to how to test relationships found. We also will learn how to test relationships 
between categorical variables with a chi-square analysis. 
 
The following decision tree includes on the right the hypothesis tests we will be covering.  
It includes the various features of research design that determine which test to use. 
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Decision Tree for Hypothesis Testing 
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Chapter 14: Hypothesis Testing in General 
 
 

Hypothesis testing is an inferential procedure that uses sample data to evaluate the 
credibility of a hypothesis about a population.  In other words, we want to be able to 
make claims about a population as a whole based on data that we collect from a single 
sample.  We may find our sample to be different from the population, but is it different 
enough to be confident that we will get the same result from another sample?  Might a 
difference we found just be by chance and so unlikely to occur repeatedly? 
 
Let’s work through an example.  We can ask about the value of knowing about statistics.  
Suppose that we think that knowing about statistics helps people understand USA Today, 
the nationwide newspaper.  We take a sample of students who have completed this class, 
and a sample of students from another class, none of whom have had a statistics course.  
To control motivation and interest in statistics, we only use students in majors that 
require statistics.  Each person is given a copy of the paper, asked to read it, and is later 
tested for comprehension of the stories in the paper. 
 

•   What are the populations here? 
1) students who take statistics 
2) students who haven’t yet taken statistics 
 

•   Our question: Are these two populations different? In other words, is there an 
effect of taking stats (on comprehending the paper)? 

 
•   Results of comprehension test (fictional):  

1) Mean for the statistics-class sample = 70% correct 
2) Mean for the no statistics-class-sample = 65% correct 
 

•   Problem: Is this 5% a “real” difference, or is it just due to sampling error.   In 
the latter case, such a difference is likely to occur by chance, just as rolling 4 
with dice isn’t all that unlikely.  We happened to draw a sample with a 
distance from the population mean that is small relative to the size of the 
standard deviation.  
 

•   If the difference is large enough to be very unlikely as a result of sampling 
error, then we can conclude that the two populations are different.  This 
supports the hypothesis that statistics helps with reading the paper.  If the 
difference is due to sampling error, then we should conclude that the 
populations are most likely the same, and that statistics knowledge does not 
help with understanding the newspaper. 

 
 

 
Formalizing the Procedure of Hypothesis Testing 
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The advantage of formalizing is that if everyone uses the same techniques, then we know 
why they conclude what they do, and furthermore, we know about the assumptions that 
they are making. We will follow a 7-step procedure HC-STC-DC. Make up your own 
mnemonic (memory aid) or use this one: Hot Current-STeady Current-Direct Current. 
 
 Step 1: Hypotheses 
 

Our hypothesis is an educated guess/prediction about the effect of 
particular events/treatments/factors, which result in differences between 
populations.  Our hypothesis may be general (e.g., this course will change 
comprehension abilities) or specific (e.g., this course will improve 
comprehension abilities by at least 10).  We will learn about the logic of 
the null hypothesis. 
 

 Step 2: Criterion for decision 
 

We need to decide how unlikely the difference we find would have to be 
by chance in order to accept it.  We will select a small probability from a 
distribution, like p ≤ 0.05; this is our criterion.  

 
Step 3: Sample statistics 

 
Then the experiment is done and data is collected from the sample on the 
measures being used.  In this course, we won’t actually collect data; 
instead, we will work with data supplied to us from imagined experiments. 
We will calculate the sample statistics that we have already learned: mean, 
sum of squares, and standard deviation.  In addition, we will learn about 
statistics pertaining to the distribution of sample means.  

 
Step 4: Test statistic 
 

We will learn about a series of tests, each associated with a theoretical 
distribution: the z-test with the normal distribution, t-tests with the t 
distribution, and the c2 tests with the c2 distribution.  The z- and t-tests 
compare the difference between our sample mean and the population mean 
to the difference expected by chance.  We will learn a series of formulas 
and the circumstances that determine which test to use. 

 
Step 5: Compare observed to critical test value 

 
We already know how to use the Normal Unit table; we will learn how to 
look up values in the tables of t and c2 distributions.  We will need to 
determine the degrees of freedom in the test in order to look up the correct 
critical test value in a distribution table. 

 
Step 6: Decide about null hypothesis 
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If the observed test value is more extreme than the critical value, we have 
found a difference that is very unlikely by chance, so it must be “real.”  
Otherwise, we must decide that the difference found could have occurred 
by chance, that is, as a result of sampling error.  We will learn how these 
findings relate to the null hypothesis.  

 
Step 7: Conclude about relationship 
 

Finally, we interpret how the findings relate to our original research 
question.  Our experiment either provides support for the relationship 
between two variables hypothesized or it does not. If it does, we can 
calculate the size of the effect. 

 
In the remainder of this chapter and the next one, we look at each of these steps in more 
detail. 
 
Step1: Hypotheses 
 
The logic that underlies hypothesis testing is that there are always (at least) two 
hypotheses:  the null hypothesis and the alternative hypothesis 
 

The null hypothesis (H0) predicts that the independent variable (treatment) has 
no effect on the dependent variable for the population. 
 
The alternative hypothesis (HA) predicts that the independent variable has an 
effect on the dependent variable for the population.  It is either directional or 
nondirectional. 

 
The logic of hypothesis testing assumes that we are trying to reject the null hypothesis, 
not that we are trying to prove the alternative hypothesis. 
 
Why?  In everyday thinking, we talk of proving things to be true.  But logical analysis 
demonstrates that to do so we would have to test every possible instance of our 
proposition and find the expected result in every single case.  Otherwise, we are not 
proving all cases, but only making an unproven inference that that the cases we haven’t 
tested are the same as the ones we have.   
 
So, it is easier to prove that something is not true than to prove that it is.  We just need to 
show that one instance is not true.  We then can make an inference from the sample we 
have studied to the population that we have not.  Our inference is a strong likelihood but 
not an absolute certainty.  In science, we accept that this is the best we can do.  
Experientially we can only deal with probable knowledge (inference from sample 
studied to whole population); only ideally can we declare absolute truth (true of the 
whole population).  So in scientific thinking, we start by stating a null hypothesis and 
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then try to reject it!  The everyday ordinary hypothesis that there is a difference becomes 
our alternative hypothesis, which we can only indirectly support. 

Example: 
Null hypothesis: Taking a statistics course leads to no improvement in 
understanding USA Today. 
Alternative hypothesis: Taking a statistics course improves understanding of USA 
Today. 
 
To accept the alternative hypothesis:  We need to test the whole population and 
find that every single student who took a statistics course improves in 
understanding USA Today.  Furthermore, we would need to keep testing forever 
to be sure that every additional student who takes statistics improves in 
understanding USA Today.  Explained in this detail, we see that this is obviously 
impossible.  Our only justified conclusion would be to fail to accept the 
alternative hypothesis. 
 
To reject the null hypothesis:  Our sample must show so much improvement that 
we can conclude that we didn’t just get lucky with this one group.  Then we infer 
(but don’t prove) that such improvement will occur in other samples drawn from 
the population of those who have taken statistics.  In keeping with our 
probabilistic approach, we don’t make the claim for every single individual (we 
know there is a lot of variability) but for every sample.  When we reject the null 
hypothesis, we are claiming that almost all other samples of students who took 
statistics will improve in understanding USA Today.  On the other hand, if our 
sample does not show enough improvement, we fail to reject the null hypothesis. 
Note that we haven’t positively proven the null hypothesis; again, that would 
require testing everyone who ever took and will take statistics.  Instead, we are 
claiming that other samples who have taken statistics would not show 
improvement in understanding USA Today either.  
 

Note in the above example that the alternative hypothesis was directional.  The statistics 
class must have a higher score in order to reject the null hypothesis.  This is the most 
common situation; the experimenter predicts that the particular events/treatments/factors 
will result in a higher or lower score on the measure of interest in comparison to the score 
of the population in general.  However, sometimes the experimenter is just looking to 
prove any effect of the particular events/treatments/factors.  So, a difference in either 
direction is of interest and, if large enough, would support rejecting the null hypothesis. 
 
Step 2: Criterion for decision 
 
The next step is to set the criterion to use to either reject or fail to reject (remember, not 
accept) the null hypothesis.  How unlikely does the effect have to be to claim it didn’t 
occur by chance? 
 
(Note that the word criteria is the plural of criterion, just as the word data is the plural of 
datum.  These are Greek and Latin words, respectively, which accounts for the plurals 
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that are irregular by English standards.  There are many such words throughout the 
disciplines of advanced learning, testifying to their origins and to the learning of these 
classical languages by scholars until the 20th century.  Although we don’t still learn those 
languages, we should use words from them accurately, and not say “a criteria” or “the 
data is.”) 
 
Consider the problem that we have.  We have a sample, and its descriptive statistics are 
different from the population’s parameters.  How do we decide whether the difference 
that we observe is due to a “real” difference (which reflects a difference between two 
populations) or is due to sampling error? 

 
To deal with this problem the researcher must set a criterion in advance.  For example, 
think of the kinds of questions we were asking in the previous section.  Given a 
population X with µ = 65 and s = 10, what is the probability that our sample (of size n) 
will have a mean of 80?  We’re going to be asking the same questions here, but taking it a 
step further and say things like, “The probability that my sample has a mean of 80 is 
0.0002.  That’s pretty small.  I’ll bet that my sample isn’t really from this population but 
is instead from another population.” 
 
Setting a criterion in advance is concerned with this part about saying “that’s pretty 
small”.  When we set the criterion in advance, we are essentially saying how small a 
chance is small enough to reject the null hypothesis.  Or in other words, how big a 
difference do I need to have to reject the null hypothesis.  It is critical that this be done 
before running the study; we can’t find a difference and then decide how big it needs to 
be.  As we will discuss more below, the size of the difference also depends on whether 
our alternative hypothesis was directional or not. 
 
There are various considerations that can influence the probability that is set. However, 
there often are conventional levels set within disciplines.  For example, some fields may 
say that p ≤ 0.05 is low enough to reject the H0, while other fields may chose p ≤ 0.01 as 
the cut off.  In psychology, p ≤ 0.05 is commonly set as the criterion. 

 
Errors in Decision Making 
 
That’s the big picture of setting the criterion; now let’s look at the details: 
 
 What are the possible real world situations?  

•   H0 is correct •   H0 is wrong 
 

 What are the possible conclusions?  
•   H0 is correct •   H0 is wrong 

 
 So this sets up four possibilities (2 X 2): 

•   2 ways of making mistakes •   2 chances to be correct 
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Researchers’ Decision-Making Table 
 

 Actual situation 
 

Experimenter’s 
Conclusion 

H0 is correct 
 

H0 is wrong 

Reject H0 Oops! 
Type I error 

Yay! 
Correct  
(Statistical Power) 

Fail to reject H0 Yay! 
Correct 

Oops! 
Type II error 

 
The two kinds of error each have their own names, because they really are reflecting 
different things. 
 

Type I error (a, alpha): H0 is actually correct, but the experimenters rejected it.  
There really is only one population. Although the probability of getting a 
sample is really small, you just got one of those rare samples. 

 
Type II error (b, beta): H0 is really wrong, but the experimenters didn’t reject it. 

Your sample really does come from another population, but your sample 
mean is so close to the original population mean that you can’t rule out the 
possibility that there is only one population 
 

Statistical Power: The power of a statistical test is its ability to detect these differences. 
Put in statistical terms, power is a statistic’s ability to correctly reject the null hypothesis 
(Gravetter & Wallnau, 1996).  A powerful statistic is more sensitive to true differences in 
your data than a less powerful statistic.  Think of the power of a telescope.  A telescope 
with low power will detect only the brightest stars; weak stars will remain unseen. 
Similarly, a test with low power will detect only large group differences and small ones 
will remain unseen. Power is defined as 1 - b, when b is the probability of a Type II error. 
 
A familiar example of this 2 X 2 decision-making matrix is in our justice system. 
 

Courtroom Jury’s Decision-Making Table 
 

 Actual situation 
 

Jury’s 
Conclusion 

X is innocent 
 

X is guilty 

Guilty Oops! 
Type I error 

Yay! 
Correct 

Not Guilty Yay! 
Correct 

Oops! 
Type II error 
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Notice that the initial hypothesis is that the accused is “innocent until proven guilty.” 
(This is not the case in other judicial systems, where instead of having the rights of a 
citizen who is accused of a crime, you are treated as a criminal who has been found out.)  
It is difficult to prove total innocence; after all, there is some evidence to support 
accusing the person.  So, the jury has to prove “guilt beyond a reasonable doubt” if it is to 
reject the initial hypothesis that the person is innocent.  Here the Type I error results in 
sending an innocent person to jail.  A Type II error, by contrast, lets a guilty person go 
free.  Because our society values freedom and seeks to avoid abuses of authority by the 
state, we set our criterion for the probability of mistakenly finding guilt very low (beyond 
a reasonable doubt).  As a consequence, criminals are more likely to go free than in an 
authoritarian society, which is more concerned about keeping this probability very low 
even if innocents end up in jail. 
 
In scientific research, we typically take a conservative approach, and set our criteria such 
that we try to minimize the chance of making a Type I error (concluding that there is an 
effect of something when there really isn’t).  In other words, scientists focus on setting an 
acceptable alpha level (a), or level of significance.  
 
The alpha level (a), or level of significance, is a probability value that defines the very 
unlikely sample outcomes when the null hypothesis is true.  Whenever an experiment 
produces very unlikely data (as defined by alpha), we will reject the null hypothesis.  
Thus, the alpha level also defines the probability of a Type I error, that is, the probability 
of rejecting H0 when it is actually true.  There is no correct alpha level, but it is typically 
small, such as 0.10, 0.05, and 0.01.  In psychology, a is usually set at 0.05. 
 
Step 3: Sample statistics 
 
After we collect (or are given) data, we have to calculate statistics based on our sample.  
You may think that you can look at the difference between the sample mean and 
population mean in terms of the standard deviation, as we did with z-scores.  But z-scores 
apply to the probability of individual scores in a distribution of individual scores.  
Consider the probability of getting a SAT score of 550; we know that the standard 
deviation is 100, so its z-score is 0.5, a pretty common score.  The Unit Normal table 
shows that we expect to get a score that high or higher 30% of the time; it’s at the 70th 
percentile.  But what if we have a class with a mean SAT score of 550; how likely is that?  
Does that seem less likely than an individual with that score?  Think of an individual of a 
sample of one. What happens as we increase sample size: from a class of 25 to 100 
students?  Now we are asking about the probability of a sample mean.  So we need to 
consider a distribution of sample means (or DSM), that is, a distribution where each 
score represents the mean of a sample (rather than a score of individual). 
 
Distribution of Sample Means (DSM) 
 
For a distribution of sample means, we should be able to find its mean and a measure of 
average dispersion.  It turns out that the mean of the population of individual scores and 
of sample means is the same, so we don’t need different terminology.  But the measure of 
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average dispersion is different, so we will use another term, standard error of DSM.  
Note for individual scores, we refer to their deviation from the mean relative to the 
standard deviation; there is no error involved, just difference from the group average.  
However, the difference between a sample mean and the population mean is an error, 
specifically, an error of sampling.  The size of this error relative to the standard error is 
what will enable us to decide if our sample is really different (from a different 
population) rather than just a sample drawn randomly from the original population. 
 
What is the shape of DSM?  If the population of individual scores is normal, so will the 
DSM.  However, if the basic population is not normal, as samples get large (n > 30), 
DSM approaches a normal population.  So with large enough sample sizes, we can 
conduct inferential statistics even on skewed populations. 
 
How do we calculate the standard error? If we know the population standard deviation, 
we simply take it and divide by the square root of the sample size.  Note the subscript in 
the formula for the standard error to indicate that it refers to the DSM; without the 
subscript we just have the standard deviation of a population of individual scores.  
 
 
Standard error (s known):  
 
 
For given size samples, we can determine the probability of getting certain means or of 
getting means the same or greater/less than certain means. In class, we will go through an 
example. Note from the formula that when n = 1,  = s.  What happens as n gets 
bigger?  When a denominator gets larger relative to the numerator, the value of the 
fraction gets smaller (⅛ of a pie is less than ½ of a pie).  As n gets larger,  gets smaller 
relative to s, that is, the average dispersion in DSM gets smaller.  And since this statistic 
is in the denominator of test-values, its getting smaller means the test-value will get 
bigger, that is, less likely to occur by chance. 
 
Here is how this plays out for SAT scores.  When n = 1,  = s = 100, that is, 100 is the 
standard error from the population mean when you draw samples of just one person.  But 
when n = 25,  = 20, that is, the standard error from the population mean is only ⅕ as 
large when you draw samples of 25 persons.  And when n = 100,  = 10, cutting the 
standard error in half from the sample of 25.   
 
An individual with a score of 550 (z = 0.50) is at the 70th percentile.  A class of 25 with a 
mean of 550 (  = 2.5) is at the 0.6th percentile.  A class of 100 with a mean of 550 (  = 
5) is beyond the 0.01st percentile.  So, an individual score of 550 is not unusual, but a 
class of 25 with a mean of 550 would occur by sampling from the overall population less 
than 1/100 times; for a class of 100, it would occur less than 1/1,000.  We could be 
confident that there really is something different about these classes; they are very 
unlikely to be random samples of SAT takers. 
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We have just run z-tests!  The next chapter will go through all of this in greater detail.  
The point being made here is that if we know the population mean, the sample mean, and 
the standard error, the logic for finding an individual z-score applies to finding the z-
value for a sample mean.  We then can look in the table of the Unit Normal distribution 
and see what the probability of that z-value is.  If is more extreme than a, then we can 
reject the null hypothesis; if it is not more extreme, then we fail to reject the null 
hypothesis.  We will go through these remaining steps of hypothesis testing in the next 
chapter. 
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Chapter 15: Hypothesis Testing with z-tests 
 
 
Remaining Steps 
 4 & 5: Test statistic & Compare observed to critical test values 
 6 & 7: Decide about null hypothesis & Conclude about relationship 
 
We are ready to look at pictures of distributions to try and connect them to what we’ve 
been discussing.  Let’s work through a series of population distributions and consider 
how different our sample mean ( ) has to be from the mean of the population 

distribution of sample means ( ) to be confident it is not just by chance. 
 
 

 

 
 
a = probability of making a 

type I error 
 
 

 
 

 

Specific alternative 
hypothesis 

 
H0:  No difference 
HA:  Difference: 
     New group has higher mean 
Test: 1-tailed 
a =  0.05,  
      all in 1 tail 

 

 
 

General alternative 
hypothesis 

 
H0:  No difference 
HA:  Difference: 
     New group has higher or 

lower mean 
Test: 2-tailed 
a =  0.05, 
        0.025 in each of 2 tails 

 
How do we interpret these graphs?  If our sample mean falls in the shaded areas then we 
reject the H0.  On the other hand, if our sample mean falls outside of the shaded areas, 
then we may not reject the H0. The shaded regions are called the critical regions. 
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A critical region is composed of extreme sample values that are very unlikely to be 
obtained if the null hypothesis is true.  Thus, the more extreme the test statistic is (either 
very negative or very positive), the more likely it is to fall in a critical region.  The size 
of the critical region is determined by the alpha level.  Sample data that fall in the 
critical region will warrant the rejection of the null hypothesis.  We can say that the 
difference we found is statistically significant, that is, that it is unlikely to have occurred 
by chance (sampling error) at our predetermined level (less than 5 times out of 100). 
 
Example, one-tailed 
 
Population distribution 
 

 

µ = 65 and s = 10 (note line for 1 SD) 
Suppose a sample of n = 25 receives an 
experimental treatment with  = 69.   
Did the treatment work? Let’s assume an a 
= 0.05 and that our alternative hypothesis is 
that the treatment improves performance 
(makes the mean higher). 
 
Will it work if we try another sample? 
What if we take sample after sample; how 
likely is  = 69? 

Distribution of sample means 
 

 
 
 
 
 
 
 
 
 
 

 

 
Find our sample mean in the distribution of 
sample means. We need to determine the 
probability of getting that mean or higher 
for the sample. 
 
How big a deviation is a sample mean that 
is µ + 4? We need to compare 4 to the 
standard error--the standard deviation of 
sample means. Solving for it finds that  
= 10/Ö25 = 10/5 = 2.  Note the line for 1 SE 
and how much smaller  for a sample of 
25 is than s. Our sample mean is 2 SEs 
above the population mean.  Is that in the 
critical region? 
 
What is the critical region? 

•   1-tailed test, a = 0.05 
•   In the Unit Normal table, find the 

area that corresponds to a. 
•   z  = +1.65, the critical test value 
•   The critical region contains any z-

value +1.65 or greater. 
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We already knew how to find the z-score corresponding to the critical region when the 
criterion is a = 0.05; it is +1.65 (the sign of the value is important; it indicates if it is the 
upper or lower tail).  This is the critical value of the test statistic. Now we need to use a 
new z formula for sample means to find our observed test value. 
 
Below are the formulas for the standard error, which we already found, and z for the 
sample mean. 
 
Standard error (s known): 
           
 
 
                         z observed    

 
 
 

 
To find z observed for the sample mean in our example, we enter our statistics: 
 

 
 
 

 
We find that observed value of z is 2, while the critical value is 1.65, that is,  
 

|z observed |  ≥  |z critical | 
 

Note that we used the bars to indicate absolute value.  Sometimes we may omit these 
when working only with positive numbers, but they indicate that it is the absolute relative 
sizes of test statistics that are at issue.  If we had predicted a lower score in this example 
and found a sample mean of 61, the observed z would be -2 and the critical z-value would 
be -1.65.  -2 is smaller, not greater, than -1.65; however, |-2| is greater than |-1.65|.  
Remember, we are interested in observed test values in the tails, that is, more extreme 
values, either positive or negative, than critical values.  
 
Given that we found a more extreme test value than the critical value, our decision is to 
reject H0 and our conclusion is that the treatment works to improve performance. 
 
For the example that we just did, we made a hypothesis that the treatment would make a 
difference in a specific direction (that is, the treatment would increase the mean).  
However, a nondirectional hypothesis can be tested, namely, that the treatment will 
change the mean, either increase or decrease it.  As we saw above, this will affect our 
critical region. In a 1-tailed test, it is all in the upper or lower tail, depending on whether 
we predicted the treatment to increase or decrease the score from the population mean.  In 
a 2-tailed test, we must divide the critical region into the two tails of the distribution. 
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Example, two-tailed 
 
Population distribution 
 

 

Same as above: 
µ = 65, s = 10 (note line for 1 SD) 
sample of n = 25, 
treatment  = 69.  
 
Did the treatment work?  Does it affect the 
population of individuals? 
 

Distribution of sample means 
 

 
 
 
 
 

 
  

 
Find our sample mean in the distribution of 
sample means. To determine the 
probability of getting that mean or higher 
for the sample, we need to solve for the 
Standard Error , that is, the standard 
deviation of sample means:  = 10/Ö25 = 
10/5 = 2.  Note the line for 1 SE. Our 
sample mean is 2 SEs above the population 
mean.  Is that in the critical region? 
 
What is the critical region? 

•   2-tailed test, a = 0.05, so 0.025 in 
each tail  

•   In the Unit Normal table, find the 
area that corresponds to a =  0.025. 

•   z  = ±1.96, the critical test value 
The critical region contains any z-value 
+1.96 or greater or -1.96 or smaller. 
 

 
The observed z we calculated above still applies.  The kind of hypothesis we make has no 
affect on it.  However, our comparison is different because we have a different critical z-
value.  Here we are comparing our observed z of 2 to a critical z-value of ±1.96.  Again, 
our z is greater (in the upper tail), and again we need to indicate a comparison between 
absolute values because a more extreme z-value in either direction is in the critical 
region. 
 

|z observed |  ≥  |z critical | 
 
Thus, our decision again is to reject H0 and our conclusion is that the treatment works to 
improve performance.  The sample mean was large enough to be significantly different 
from the population mean for a directional or nondirectional hypothesis.  However, it 
takes a larger difference to reach significance for a nondirectional hypothesis, since a is 
divided between two tails.   
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Consider what would happen in our example if the sample mean had been 68.5.  The 
observed z would be 3.5 (difference between sample and population mean) divided by 2 
(standard error) or 1.75.  This is large enough to be in the critical region for a 1-tailed test 
(critical z = +1.65) but not a 2-tailed test (critical z = ±1.96).  Consider the decision-
making table from the last chapter.  If the treatment really does improve performance, but 
we only made a nondirectional hypothesis, we would decide that it made no difference, a 
Type II error.  If we expect an effect in one direction, we should make a directional 
prediction because it enables us to conduct a more powerful test of the hypothesis. 
 
General Formula for Hypothesis Testing 
 
We now want to consider the general form of the statistic used to test hypotheses.  Below 
is the z-test formula and next to it the general form of all test statistics. 

 
  test statistic =         observed difference         . 
    difference expected by chance 
 

The statistic is testing how likely the sample is to have been drawn from the population.  
The smaller the difference between the sample and population means, the smaller the test 
statistic.  (As a numerator gets smaller, the value of the fraction gets smaller--⅜ of a pie 
versus ⅛ of a pie.)  When the observed test value shrinks to zero, the test statistic equals 
zero.  Remember that by definition a z-score of zero is the mean of a distribution.  So a 
sample mean equal to the population mean results in a z-value of 0, and the probability of 
getting a mean of the size or greater is 50%.  Obviously, we could not conclude that our 
sample is from a different population. 
 
As the observed difference gets larger, the value of the test statistic gets larger.  As with 
the distribution of z-scores, the larger the value (the further from the mean of 0), the 
lower the probability.  According to the Unit Normal table, a sample mean large enough 
to produce a z-score of 2 is likely to occur less than 5 times out of 100 samples drawn, so 
we can conclude that the sample is from a different population. 
 
Now, consider the denominator of the formula.  It is a measure of the variability of the 
distribution of sample means, which is derived from the variability of the population.  
The smaller the variability, the smaller an observed difference is needed to be significant.  
For a steep, narrow distribution, a small difference from the population mean is 
significant; for a wide distribution, a much larger difference is needed.  Since the 
variability is in the denominator, the value of the fraction changes in the opposite 
direction: smaller variability produces a larger test value, and larger variability produces 
a smaller test value.  If the observed difference between sample and population means is 
5, then variability of 2 will produce a test value of 2.5; for a z-score, the probability is 
less than 1/100.  But if the observed difference and variability are both 5, then the test 
value is 1, a z-score of 0.16, indicating a more likely sample by chance.  That is, you 
would expect to draw a sample with this mean or larger 16 out of 100 times, so you 
would reject the null hypothesis if a = 0.05 so as to avoid the likelihood of a Type I error 
(claiming there is a difference when there really isn’t one). 
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Effect Size 
We need to add a caution about sample size and statistical significance.  The larger the 
sample size, the smaller the standard error, so the smaller an observed difference needed 
to be significant.  However, this also means that with very large sample sizes, even if the 
effect is really small, we're more likely to reject the null and decide there's an effect. 
Therefore, in the case of very large samples, we may detect effects that lack practical 
significance because they are so small they may not be important.  For example, with 
very large census or poll samples, differences will occur on many variables, but may be 
of little practical significance.  However, in basic scientific research, identifying a small 
but reliable difference may have great significance.  We must be careful that when we 
find statistical significance that our findings also have practical significance, meaning the 
effect of the treatment is important. 
 
As a way of evaluating the size of an effect irrespective of sample size, we can use 
Cohen’s d.  (There are other statistics that can be used for effect size, but they will not be 
covered in this course.) It provides the distance between the two means (the observed 
distance) relative to the standard deviation of the population (rather than the standard 
error, which is influenced by sample size). Here is the formula for z-tests, when we know 
the population standard deviation. 
 
 
 
 
Cohen provided guidelines about effect size and these are generally recognized as 
conventions, much as α = .05.  A small effect size is .20; a medium effect size is .50; 
and a large effect size is .80. Effect sizes > 1 are considered very large.  Effect sizes 
are absolute values, so the observed difference can be in either direction. An effect size of 
1 indicates that the sample mean is 1 SD from the population mean. An effect size of .2 
indicates that the sample mean is only 20% of a SD from the population mean. 
 
Assumptions of Hypothesis Testing 

1) Random sample - the samples must be representative of the populations.  
Random sampling helps to ensure the representativeness. 
2) Independent observations - also related to the representativeness issue, each 
observation should be independent of all of the other observations. That is, the 
probability of a particular observation happening should remain constant and not 
be affected by other observations. 
3) s is known and is constant - the standard deviation of the original population 
must stay constant.  Why?  More generally, the treatment is assumed to be adding 
(or subtracting) a constant from every individual in the population.  So the mean 
of that population may change as a result of the treatment, however, recall that 
adding (or subtracting) a constant from every individual does not change the 
standard deviation. 
4) The sampling distribution is relatively normal - either because the distribution 
of the raw observations is relatively normal, or because of the Central Limit 
Theorem (or both). 
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Violations of any of these assumptions will severely compromise any conclusions 
that you make about the population based on your sample.  (Various adjustments 
can be made or other kinds of inferential statistics used to deal with violations of 
various assumptions.  Most of these are beyond this course.) 

 
The framework that we have just discussed can be used for a wide variety of different 
situations.  The rest of the course will cover some of the situations for which hypothesis 
testing is done with statistics.  In each case we will follow the same basic steps of the 
framework, but the details of these steps vary depending upon the design of the research.  
The design determines the nature of the hypotheses, the way in which the test statistic is 
calculated, and ultimately how the conclusions are drawn.  To assist with the decision 
making about which statistical test to use, we refer you to the decision tree presented at 
the beginning of this section (page 73).  The tree provides a series of questions, for which 
the answers will guide you to the appropriate statistical test. 
 
 
 Practice	  Questions:	  Set	  9	  

 
 

 (1)	  Discuss	  the	  errors	  that	  can	  be	  made	  in	  hypothesis	  testing	  (Types	  I	  and	  II).	  
	  
(2)	  Scores	  on	  the	  SAT	  test	  are	  Normally	  distributed	  with	  a	  µ	  =	  500,	  and	  a	  s	  =	  100.	  	  

Dr.	   Ed	   Standards,	   the	   local	   district	   school	   superintendent,	   develops	   a	   new	  
program	  that	  he	  believes	  should	   increase	  SAT	  scores	  for	  students.	   	  He	  selects	  
25	  local	  high	  school	  students	  to	  take	  the	  program	  and	  then	  take	  the	  SAT	  test.	  	  
His	   sample	   has	   an	   average	   SAT	   score	   of	   559.	   	   Conduct	   a	   hypothesis	   test	   to	  
determine	  whether	  this	  program	  works.	  	  Show	  all	  of	  your	  steps	  and	  state	  all	  of	  
your	  assumptions.	  

	  
(3)	  Suppose	  that	  the	  school	  board	  tells	  Dr.	  Standards	  that	  the	  new	  program	  is	  too	  

expensive	  to	  pilot	  on	  25	  students	  and	  asks	  that	  he	  reduce	  his	  sample	  size	  to	  9	  
students.	   	   Assume	   that	   same	   properties	   for	   the	   population	   of	   SAT	   scores.	  	  
Suppose	  that	  his	  sample	  of	  9	  students	  also	  has	  a	  mean	  score	  of	  559.	  	  How	  does	  
this	  reduction	  in	  sample	  size	  affect	  Dr.	  Standards’	  hypothesis	  test?	  

	  
ANSWERS	  ON	  P.	  159	  
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Chapter 16: One-Sample t-test 
 

 
The formulas 
 
The one-sample t-test allows us to extend our hypothesis testing procedure to cases where 
we don’t know the population standard deviation s.  Without the population standard 
deviation s, we can’t directly calculate the standard error  (as we did for the z-test). In 
this case, we will take our best guess at what s might be. That value is the sample 
standard deviation s, because without knowing the values in the entire population, our 
best guess at what the value is comes from the sample we are testing.  That’s what the 
sample statistics are supposed to be doing – representing the population values. So here 
we’ll let the sample statistic s represent the population parameter s in our test. And 
instead of calculating the standard error directly with s, we’ll calculate the estimated 
standard error, using the Roman alphabet to indicate that it is estimated from a sample: 

.  
 
Recall the two relevant formulas for a one-sample z-test: 
 

 
 
 

 
 
To get one-sample t-test formulas, we substitute s and  for s and .  To solve for s, 
we need to recall the formulas for the standard deviation of a sample and degrees of 
freedom.  That gives us these four formulas, two old and two new: 
 

   
df = n - 1 

 
 
 
 
Standard error s unknown: 
 
 

One sample t-observed:   

 
 
 
Effect size: 
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We use the t-test the same way we use the one-sample z-test (i.e., when we want to 
compare a treated sample with a known population), but in cases where we only know the 
population µ and not the population standard deviation s. 
 
Rule: When you know the value of s, use a z-statistic. If s is unknown, use s to estimate 
s and use the t-statistic. The same is true for making estimations of the population mean 
(e.g., confidence intervals) that we will cover later. 
 
Even though the formulas in the two situations are very similar, there is an important 
conceptual difference between the two situations. Because we are using the sample 
standard deviation s to estimate the population standard deviation s, we need to take into 
account the fact that it is an estimate. This means that we must take the degrees of 
freedom into account because we are using a sample that is less variable than a 
population (we covered this already when we talked about variability). The formula for s 
uses n - 1 rather than n in the denominator because we have one fewer value free to vary. 
These are our degrees of freedom. 
 
Degrees of freedom describe the number of scores in a sample that are free to vary. 
Because the sample mean places a restriction on the value of one score in the sample, 
there are n - 1 degrees of freedom for the sample.  
 
This means that the higher the value of n, the more representative the sample will be of 
the population, which in turn means that s will be a better estimate of s. It also has 
implications for the test statistic. The shape of the t-distribution varies as a function of the 
size of n (really it varies with the degrees of freedom). The bigger the n (the bigger the 
df), the closer the t- distribution is to a normal distribution.  
 
Notice that we're talking about a new distribution here (or family of distributions, the t-
distributions). This also means that we won't be using the Unit Normal table. Instead 
we'll have to use a different table, the t distribution table. It is organized by both p values 
and by degrees of freedom (df). A copy of the t-table can be found at the end of this 
packet.  Reading this table is different than reading the unit normal table. So let's talk 
about why first, and then how. 
 
The answer to the first question is because the Unit Normal table is describing just one 
distribution--the normal distribution. The t-distribution table is actually describing several 
different t-distributions. This is because the there is a different t-distribution for every 
different degree of freedom (although when df gets large, the differences become really 
small). So, each row corresponds to a different t-distribution. As a result of this, there 
also isn't enough space to put all of the probabilities corresponding to each possible t-
score. Instead, what are listed are the t-scores at commonly used critical values (that is, at 
popular alpha levels).  
 
The t-distribution, with infinite (or practically very large) dfs is equal to the normal 
distribution. That's why along the bottom of the table is a row of z-scores. The bottom 



 

 96 

row of the table tells you which column to look in for confidence intervals. With smaller 
dfs the t distributions are shaped differently (although they are still unimodal and 
symmetrical with a mean = 0).  
 
7-Step Procedure 
 
We are ready to go through our 7-step procedure for hypothesis testing using a one-
sample t-test.  Remember from the decision tree (p. 73) that the research design involves 
one score per participant, no known population variance, and one sample. 
 
Step 1: Hypotheses  
Step 2: Criterion for decision  
Step 3: Sample statistics 
Step 4: Test statistic 
Step 5: Compare observed to critical test score 
Step 6: Decide about null hypothesis 
Step 7: Conclude about relationship 
 
Example: Suppose that your psychology professor, Dr. I. D. Ego, gave a 20 point true-
false quiz to 9 students and wanted to know if they were different from groups in the past 
who have tended to have an average of 9.0. The scores from the current group were: 6, 7, 
7, 8, 8, 8, 9, 9, 10. Did the current group perform differently from those in the past?  
Assume a significance level of a = 0.05.  
 
Step 1:  
 
H0: µ = 9.0 and  
HA: µ ≠ 9.0 
 
Note that the alternative hypothesis is nondirectional (asking if they are different, not 
specifically whether they are better or worse). Therefore, we will be conducting a two-
tailed test. 
 
Step 2: 
  
a = 0.05 
 
Step 3:  

 

 = 72/9 = 8 

 
 = 12 

 � 

X = Σ X
n

� 

SS = Σ(X − X )2
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n = 9, so df = 9 - 1 = 8 
 
 
Step 4: 
 
 
 

 

 
 
 
 
Step 5: 
 
Find the critical t from the table: df = 8, 2-tailed, a = 0.05 
t-critical = ±2.306 and  t-observed = -2.44 
 
 |t observed  |  ≥  |t critical | (observed t is more extreme) 
 
Step 6: 
 
Reject the null hypothesis. 
 
Step 7: 
 
It looks as if the current students are different from past students. They are doing worse; 
we know this because the sample mean of 8 was lower than the population comparison 
mean of 9 and our test tells us this difference is large enough to be significant, that is, 
unlikely to have occurred because of sampling error. When we calculate the effect size, 
we find that it is considered to be large, almost a full 
standard deviation lower than the population mean. 
 
 
 
 
 
The practice questions and lab problems provide more examples for you to work through. 

� 

s = SS
n −1

= 12
8

= 1.5 =1.225

� 

s
X 

= s
n

= 1.225
9

= 1.225
3

= 0.41

� 

t =
X − µ

sX 
= 8 − 9
0.41

= −2.44

� 

d = X − µ
σ

= 8 − 9
1.225

= 0.82
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 Practice	  Questions:	  Set	  10	  
 

 

 (1)	   Suppose	   that	   your	   psychology	   professor,	   Dr.	   I.	   D.	   Ego,	   wants	   to	   evaluate	  
people's	  driving	  ability	  after	  24	  hours	  of	  sleep	  deprivation.	  So	  she	  develops	  a	  
test	  of	  driving	  skill	  (scores	  ranging	  from	  1-‐bad	  driving	  to	  10-‐excellent	  driving)	  
and	  administers	  it	  to	  101	  drivers	  who	  have	  been	  paid	  to	  stay	  awake	  for	  24	  hrs.	  
The	  scores	  from	  the	  group	  had	  a	  mean	  of	  4.5	  and	  a	  standard	  deviation	  of	  1.6.	  
Determine	  if	  the	  sleep-‐deprived	  group	  mean	  is	  significantly	  different	  from	  the	  
known	  population	  mean	  of	  5.8	  for	  the	  driving	  test.	  Assume	  a	  =	  .05.	  

	  
(2)	   Several	   years	   ago	   a	   school	   survey	   revealed	   that	   the	   average	   age	   at	   which	  

students	   first	   tried	   an	   alcoholic	   beverage	  was	  µ	   =	   14	   years.	   To	   determine	   if	  
anything	   has	   changed,	   a	   random	   sample	   of	   5	   students	  was	   asked	   questions	  
about	  alcohol	  use.	  The	  age	  at	  which	  drinking	  first	  began	  was	  reported	  as	  11,	  
13,	  14,	  12,	  10.	  Use	  these	  data	  to	  determine	  if	  there	  has	  been	  a	  change	  in	  the	  
age	  at	  which	  drinking	  began.	  Use	  a	  =	  .05.	  

	  
(3)	  A	   random	  sample	  of	  n	   =	  16	   scores	  has	  M	  =	  48.	   	  Use	   this	   sample	   (a	   =	   .05)	   to	  

determine	  if	  the	  sample	  is	  different	  from	  the	  population	  with	  µ	  =	  45	  for	  each	  
of	  the	  following	  situations:	  	  

	  
(a)	  Sample	  SS	  =	  60.	  	  
(b)	  Sample	  SS	  =	  600.	  	  
(c)	  How	  does	  the	  sample	  variability	  contribute	  to	  the	  outcome	  of	  the	  test?	  

	  
(4)	   A	   national	   company	   is	   attempting	   to	   determine	   if	   they	   need	   to	   hire	   more	  

employees.	  	  One	  thing	  they	  are	  basing	  this	  decision	  on	  is	  the	  number	  of	  hours	  
per	   week	   their	   current	   employees	   work.	   	   They	   collect	   a	   sample	   of	   average	  
hours	  worked	  per	  week	  from	  30	  employees	  to	  compare	  with	  the	  national	  full-‐
time	  work	  standard	  of	  40	  hours	  per	  week.	  	  The	  mean	  number	  of	  hours	  worked	  
for	   their	   sample	   is	   47.8	   with	   SS	   =	   1020.	   Using	   a	   =	   .05,	   conduct	   a	   test	   to	  
determine	   if	   this	  company’s	  employees	  work	  more	  hours	  per	  week	   than	   the	  
national	  standard.	  

	  
ANSWERS	  ON	  P.	  160	  
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Chapter 17: Related-Samples t-test 
 
A simple extension of the one-sample t-test can be made to handle research designs with 
related samples.  Related samples are used when one group of subjects is tested more 
than once (e.g., before and after a treatment), called a within-subjects or repeated 
measures design, or when two groups of related subjects are used (e.g., twins, matched 
subjects). The reason researchers use related samples is that they increase the internal 
validity of the study. By testing subjects twice or matching subjects on some 
characteristic, you can reduce the variability due to confounding variables. This in turn 
will increase the power of your significance test.  Go to page 73 to find these two designs 
that use the related-samples t-test in the decision tree. 
 
Recall that the formula for a one-sample t-test is 

 
 
 

 
We will use the same formula for the related-samples t-test, but the values will come 
from the set of difference scores ( ). In other words, we will determine the difference in 
the scores for each subject (or pair of subjects for matched samples) and conduct the test 
on these difference scores. The population mean if there are no differences is 0.  So for 
the related samples test we have the formula 
 
 

Related-Samples observed t:   

 
 
Effect size: 
 
  
 
Let's look at an example of how this works: 
 
Suppose we were interested in examining the effectiveness of a new therapy in reducing 
depression. We conduct a study to compare depression scores of clinic patients before 
and after the new therapy to determine the effect of the therapy. The depression score for 
each research participant is listed below (higher scores mean more depression). 
 

tD =
D − µD

sD

� 

t =
X − µ

sX 
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Person    Before Therapy   After Therapy 
   A     98     90 
   B     72     72 
   C     86     75 
   D     90     86 
   E     77     78 
   F     65     63  
 
The first step is to calculate the difference scores for each pair. We'll subtract the "after" 
score from the "before" score for each subject. A positive difference means that the 
depression score has gone down, which is a positive outcome. The set of difference 
scores is listed below. 
 
Person    Difference Score 
   A 8 
   B 0 
   C 11 
   D 4 
   E -1 
   F 2 
 
We have been able to reduce our two samples to one sample of difference scores, and we 
can conduct our test as we did before.  It is helpful to draw a distribution with the critical 
region marked.  In this case, the upper tail is the critical region because a very positive 
difference score indicates successful treatment.  We need the mean of the difference 
scores: . 
 

  = (8+0+11+4-1+2) / 6 = 4 
 
The other statistics we need are analogous to those for the one-sample test: 
 
 
Standard deviation of the differences:  
 
 

Standard error of differences:  

 
 
(D- )  (D- )2 
 4 16  
 -4 16 
 7 49 
 0  0 
 -5 25 
 -2  4 

� 

D 

� 

D 

sD =
sD
nD

� 

D 

� 

D 

� 

sD = SSD
nD −1
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S   0     SSD = 110 
 
sD = Ö110/5 = Ö22 = 4.69 
 

 = 4.69/Ö6 = 1.91 
 
Now we can calculate the observed t-value. 
 
t =    4 - 0  = 2.09 
        1.91 
 
We use µD = 0 because if there is no effect in the population, the average difference score 
should be 0 (indicating no difference between the scores). Before we can determine if this 
is a significant value, we have to calculate our degrees of freedom (n-1). Remember that 
we are testing the difference scores (n = 6), so we have 6 - 1 = 5 degrees of freedom (df = 
5).  Remember that we are conducting a one-tailed test.  
 
Now we can use our t-table to find the critical value for a = .05 and df = 5. The value is 
2.015. When we compare this with our calculated t of 2.09, we find that our test value IS 
significant, because the observed t from the sample falls in the critical region, that is, it is 
more extreme than the critical value.  Thus, we can conclude that the therapy is effective 
in reducing depression. 
 
Now we can calculate the effect size.  

 
 
 

 
It turns out to be a large effect. The posttreatment mean is almost a full standard 
deviation below the population mean of no differences. 

� 

sD 

� 

d =
D 
sD

= 4
4.69

= .85
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 Practice	  Questions:	  Set	  11	  
 

 

 (1)	  For	   the	  sample	  difference	  scores	  below,	  determine	   if	   the	  sample	  differs	   from	  
mD	  =	  0.	  Use	  alpha	  =	  .01.	  	  

	  
	  	  	  	  	  	  	  	  	  	  	  	  	  Difference	  scores	  (D):	  4,	  5,	  4,	  2,	  4,	  5,	  3,	  5,	  4	  
	  
(2)	  A	   researcher	  was	   interested	   in	   the	  environmental	   effects	  on	  handedness.	  He	  

measured	   the	   handedness	   of	   twins	   raised	   apart,	   where	   a	   positive	   score	  
indicates	   more	   right-‐handedness	   and	   a	   negative	   score	   indicates	   more	   left-‐
handedness	  (a	  score	  of	  0	  means	  the	  subject	  is	  ambidextrous).	  He	  used	  matched	  
pairs	   of	   identical	   twins	   as	   subjects	   to	   rule	   out	   any	   genetic	   contribution	   to	  
handedness	   scores	   (identical	   twins	   are	   the	   same	   genetically).	   The	   scores	   for	  
each	   pair	   of	   twins	   are	   listed	   below.	  Use	   these	   data	   to	   determine	   if	   the	   twins	  
differ	   in	   handedness	   score	   (indicating	   that	   environment	   plays	   a	   role	   in	  
handedness).	   Use	   alpha	   =	   .05.	   (Hint:	   A	   related-‐samples	   t-‐test	   is	   appropriate	  
here.)	  

	  
Handedness	  Score	  
	  

	  	  	  Pair	  	  	  	  	  	  	  	  	  Twin	  A	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Twin	  B	  
	  	  	  	  1	  	  	  	  	  	  	  	  	  	  	  	  	  	  +10	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  +11	  
	  	  	  	  2	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐	  8	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  +	  3	  
	  	  	  	  3	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐11	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  +11	  
	  	  	  	  4	  	  	  	  	  	  	  	  	  	  	  	  	  +15	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  +10	  
	  	  	  	  5	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  +	  8	  
	  	  	  	  6	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐	  4	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  +	  7	  

	  
(3)	   Each	   of	   the	   following	   sets	   of	   sample	   statistics	   comes	   from	   a	   within-‐subjects	  

design.	  
	  
Set	  1:	  n	  =	  10,	   	  =	  +4.0,	  s	  =	  10	  
Set	  2:	  n	  =	  10,	   	  =	  +4.0,	  s	  =	  2	  
	  

Find	   t-‐values.	   Even	  without	   looking	   up	   the	   critical	   t,	   for	  which	   set	   is	   it	  more	  
likely	   to	   reject	   the	  H0	   indicating	   that	   the	  µD	  =	  0?	  Why?	   (Hint:	   calculate	  effect	  
sizes.)	  
	  

ANSWERS	  ON	  P.	  162	  
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Chapter 18: Independent-Samples t-test 
 
This test is used in our final (and most common) design to test hypotheses about the 
differences between groups.  In the design discussed in the last chapter, there were two 
samples but they were related.  We were able to reduce them to a single set of difference 
scores because there were pairs of related scores.  In the independent-samples design, we 
gather data from two unrelated samples and for the first time we have to conduct a test on 
two sets of scores.  Because of this complication, the statistics are more complex and are 
not usually generated by hand but by SPSS.  We are asking whether the sample means 
are likely to have come from a single population (null hypothesis) or from two different 
populations. We call these studies between-subjects designs, because the primary 
comparison of interest is made between groups of participants, who were formerly 
referred to as subjects.  The logic of our test is similar to that of the previous t-tests we 
looked at, but the calculations get more complicated.  We’ll take it step by step. 
 
Step 1: Hypotheses 
 
The hypotheses are going to be a different because the situation is different. Remember 
that now we are making hypotheses about two different populations.  For example, 
suppose that you want to compare two different treatments (e.g., two ways of studying, 
two different drugs, etc), or you want to compare two groups of people (e.g., men vs. 
women, young vs. old, etc.).  So now, the hypotheses are about population A (women) 
and population B (men), and how they are different from one another.  
 
Suppose that we are interested in how tall women and men are. We’re looking at two 
populations here, A and B, where population A is the heights for women and population 
B is the heights for men. 
 
  µA                 µB 
 
So the H0 hypothesis would be that women and men are the same height, or that there is 
no difference between the heights of women and men. That is,  
 
H0: µA = µB  
 
- or -  
 
H0: µA - µB = 0  
   
  
Our alternative hypothesis could be that women and men are different heights. That is,  
 
H1: µA ≠ µB  
 
- or -  
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H1: µA - µB ≠ 0 
 
Is this a 1-tailed or 2-tailed hypothesis? It is not directional, so it is a two-tailed test. 
What might the hypotheses be for a 1-tailed test? Men are taller than women. H0: µB ≤ µA 
& H1: µB > µA. 
 

Step 2: Criterion for decision 
 
Figuring out your criterion is exactly the same process as before.  You pick what your 
field has decided as being an accepted level of alpha (chance of making a type I error). 
For our example, let's assume a = 0.05.  
 
Steps 3 & 4: Sample and test statistics 
 
Let’s look at some sample data (in inches) for 9 women and 9 men:  
 
Women's heights: 69, 63, 67, 64, 61, 66, 60, 63, 63 
Men's heights: 67, 73, 74, 70, 70, 75, 73, 68, 69 
 
We need to compute sample means and SS for each sample, because we have to consider 
the difference between these means and the variability for each sample as we conduct our 
test (just as we did in the one-sample case, but now we have two samples to consider). 
We do this just as we’ve done all along. If you need a review of how to calculate means 
and sum of squares, see chapters 8 and 9. 
 

 = 64.0,  = 71.0  sA =  8.25 
 
SSA = 66.0, SSB = 64.0  sB = 8 
 
We’ll look at the formula for this t-statistic, because that makes it easier to understand the 
formulas for variance and standard way. At the conceptual level, the formula is similar to 
previous t formulas. However, at the practical level, it is more complex because we have 
two samples, which means that we have two estimates. Here is full formula for the 
observed-t for independent samples with the formula for the one-sample t-test for 
comparison. 
 

        
 

 
We’re interested in the difference between the two populations, so to compute the t 
statistic we need to see if the difference between our two samples is different from the 
difference between the two populations. So the numerator is pretty much straight 
forward: the difference between the two sample means minus the difference between the 
two populations.  Remember that we are testing H0 and in most cases the latter value is 
assumed to be 0, like it is in the related samples case) 

� 

X A

� 

X B

tobs =
X1 − X2( ) − µ1 − µ2( )

s X1 −X2( )
t = X − µ

sX
=
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The denominator is where things are more complex.  What is  and how do we find 
it? We will go through it here to gain understanding of it, but normally we leave the 
calculations to SPSS or Excel. 
 
Here are the relevant formulas for a one-sample t-test:  
 

  
 

 
The formula on the left is to get the standard deviation (square root of the variance) 
needed for the formula on the right. It is for the estimate of the standard error of the 
sample mean, which is the denominator in the formula for the one-sample t-statistic.  
Here we added an additional version of it with the variance for comparison purposes. 
 
So, to answer the question above,  is the estimate of the standard error from the 
two samples.  Recall that each sample will have some sampling error associated with it.  
What we need to do here is pool the error from the two samples. The reason that we want 
to pool the samples is to make the estimate of the standard error better.  Basically, what 
we're doing is increasing the sample size that our estimate is based on, which will 
increase the precision of the estimate.  So we pool the variances using the SS and df for 
each sample.  Instead of solving for the standard deviation, like we did on the left above, 
here we solve for the analogous pooled variance. 
 

pooled variance =  
    

Note that if n1 = n2,, this averaging formula can be used.   
 

 
Now we will use the pooled variance to solve for the estimated standard error from the 
two samples. Because each sample may be of different sizes (n's), we need to weight the 
pooled variance by each sample’s n.  
 

  
 
If na = n2, the standard error reduces to: 

 

 
So let's fill in the numbers from our example.  Recall from above that 
SSA = 66.0 and SSB = 64.0; we also know that nA = 9 and nB = 9.  So,  
 

      or                              
 

� 

sX 1−X 2

� 

s = s2 = SS
n −1

� 

sX = s
n

= s2

n

� 

sX 1−X 2

sp
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SS1 + SS2
df1 + df2

s X1 −X2( ) =
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2
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+
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2
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sp
2 =
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� 

= 66 + 64
8 + 8

= 8.125
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and 
 

    or 
 

 
Now let's put together the whole t statistic (finishing step 3)  
 

  
 
Step 5: Compare observed to critical test value 
 
So what is our critical t?  First we need to know what our degrees of freedom are.  Since 
we’re using two samples, we need to take degrees of freedom for each sample into 
account.  With one sample we used n - 1 because all of the values in the sample are free 
to vary but one, because we know the value of the sample mean.  Now we've got two 
samples. How many values are free to vary?  
 
Sample A: nA- 1 and sample B: nB- 1, so together there are nA + nB - 2 = df. 
 
Looking back at our sample data above, nA = 9 and nB = 9, so df for our example is: nA + 
nB - 2 = 9 + 9 - 2 = 16 
 
Now we can go to the t-table and look up the value for 2-tailed, a = 0.05, df = 16.  
We find tcrit = ±2.12, compared to tobs = 5.22.  So, 
 
| tobs |  >  | tcrit | 
 
Steps 6 & 7: Decide about null hypothesis & Conclude about 
relationship 
 
Our observed (computed) t statistic is greater than the critical t statistic, that is, it is in the 
critical region.  Thus, we feel confident in rejecting the H0. There does seem to be a 
difference between the heights of men and women.  The sample means tell us that men 
are taller and we know that this is a significant difference, so we also know that men are 
significantly taller.  In calculating the effect size (note the pooled s), we find that it is 
very large. The sample mean difference is over three times the size of the pooled 
population standard deviation. 

 
 
 

 

s X1 −X2( ) =
sp
2

n1
+
sp
2

n2

� 

= 8.125
9

+ 8.125
9

=1.34

tobs =
X1 − X2( ) − µ1 − µ2( )

s X1 −X2( )

� 

= (64 − 71) − 0
1.34

= −5.22

� 

d = X1 − X2
sp

= 64 − 71
8.125

= 7
2.85

= 3.46

� 

2sp2
n = sp

2
n

= 8.125* 2
9

=1.34
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 Practice	  Questions:	  Set	  12	  
	  

 

 (1)	  A	  between-‐subjects	  design	  was	  conducted	  to	  compare	  two	  groups.	  Data	  were	  
the	  following:	  

	  
 = 58,  = 52 

nA = 4, nB = 4  
SSA = 84, SSB = 108 

	  
(a)	   Calculate	   the	   variance	   for	   each	   sample	   and	   then	   compute	   the	   pooled	  

variance.	   You	   should	   find	   that	   the	   pooled	   variance	   is	   exactly	   halfway	  
between	   the	   two	   sample	   variances.	   Why	   is	   this	   true	   for	   this	   particular	  
study?	  

	  
(b)	  Do	  these	  data	   indicate	  a	  significant	  difference	  between	  the	  groups?	  Use	  a	  

two-‐tailed	  test	  with	  a	  =	  .05.	  
	  
(2)	  For	  two	  samples,	  one	  sample	  has	  n	  =	  6	  and	  SS	  =	  500,	  while	  the	  other	  sample	  

has	   n	   =	   9	   and	   SS	   =	   670.	   If	   the	   sample	   mean	   difference	   is	   15	   points,	   is	   this	  
difference	  large	  enough	  to	  be	  significant	  for	  a	  =	  .05	  with	  a	  two-‐tailed	  test?	  

	  
(3)	  Two	  people	  are	  arguing	  about	  the	  size	  of	  different	  breeds	  of	  dogs.	  One	  believes	  

that	   German	   Shepherds	   are	   larger	   than	   Huskies,	   while	   the	   other	   person	  
believes	  the	  opposite	  is	  true.	  So	  they	  conduct	  a	  study	  to	  see	  which	  one	  of	  them	  
is	  correct.	  They	  sample	  the	  weights	  of	  10	  dogs	  of	  each	  breed.	  The	  data	  are	  as	  
follows:	  

	  
German	  Shepherds:	  55,	  72,	  61,	  43,	  59,	  70,	  67,	  49,	  55,	  63	  
Huskies:	  48,	  77,	  46,	  51,	  60,	  44,	  53,	  61,	  52,	  41	  

	  
(a)	  Should	  a	  1-‐tailed	  or	  2-‐tailed	  test	  be	  conducted?	  Why?	  
(b)	  Conduct	  the	  appropriate	  test	  with	  a	  =	  .05.	  Which	  breed	  is	  larger	  or	  are	  they	  

the	  same?	  
	  

ANSWERS	  ON	  P.	  164	  
	  

 

   
 
  

� 
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� 

X B
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Study Guide for Exam 3 
 
Terms 
 

Alpha level 
Alternative hypothesis 
Beta level 
Critical region 
Decision criteria 
Degrees of freedom 
Difference scores 
Effect size 
Estimated standard error 
Hypothesis testing 
Independent-samples t-test 
Null hypothesis 

One-sample t-test 
One-tailed test 
Pooled variance 
Related-samples t-test 
Standard error 
Statistical power 
t-distribution 
Test statistic 
Two-tailed test 
Type I error 
Type II error 
 

 
Worksheet: Finding critical values in distribution tables:  
 
z, 1-tailed, a = 0.05; z =  
z, 2-tailed, a = 0.05; z = 
z, 1-tailed, a = 0.01; z =  
z, 2-tailed, a = 0.01; z = 
t, 1-tailed, a = 0.05, df =29; t =  
t, 2-tailed, a = 0.05, df =29; t = 
t, 1-tailed, a = 0.01, df =29; t =  
t, 2-tailed, a = 0.01, df =29; t = 
 
Worksheet (including formulas): z-test 
 
The z-test allows us to test a hypothesis about a sample against a population mean, when 
the population standard deviation is also known. It can be conducted in Excel with 
ZTEST, which returns only the p-value, but other statistics are available from other 
formulas. 
 
Steps for conducting a z-test 

1)   Hypotheses (Is HA directional or not? Is test 1- or 2-tailed?) 
2)    Criterion for decision (If not told otherwise, assume a = 0.05.) 
3)   Sample statistics  (In Excel, AVERAGE & STDEV but need formula for SE) 
4)   Test statistic (In Excel, need formula) 
5)   Compare observed to critical test value (In Excel, compare p-value to α-value) 
6)   Decide about null hypothesis  
7)   Conclude about relationship (If there is one, calculate effect size) 
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Example: A class of 25 students averages 23 for ACT scores while the population 
statistics are µ = 21 and s = 3.  Is the class above average in ACT scores? 
 
1) Hypotheses  
 
H0  
 
HA:  
 
2) Criterion (shade in critical region) 
 

a. a = 
b. 1- or 2-tailed HA?     

 
3) Sample statistics (give the name of each)  

 
 

  
 
4) Test statistic 
 

  
 

 
 
5) Compare observed to critical test value 
 a. Is tobs in critical region? 
 b. Which has the larger absolute value? 
 
6) Decide about null hypothesis 
 a. Reject or fail to reject H0? 
 
7) Conclude about relationship 
 a. Support an effect or not? 
  b. If so, calculate effect size 
 
 
 
Worksheet (including formulas): One-Sample t-test 
 
The one sample t-test allows us to extend hypothesis testing procedures to cases where 
we are testing a sample against a population mean, but we DO NOT know the population 
standard deviation. It should be run in SPSS. 
 
Steps for conducting a one sample t-test 

Same as for z-test, except need to calculate degrees of freedom. 

 µ-1-2 1 2

€ 

σ
X 

=
σ

n

€ 

z
X 

=
X −µ

σ
X 
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Example: The quiz average for a class is 7.5.  The teacher predicts that if classical music 
is playing in the background the quiz scores will increase.  She tries this out with 5 
students and they score 7, 8, 8, 9, and 9. Using alpha set at 0.05, see if the teacher’s 
hypothesis is supported. 
 

 
 
 
 
 
 
 
 
 

 
1) Hypotheses  
 
H0  
 
HA:  
 
2) Criterion (shade in critical region) 
 

a. a = 
b. 1- or 2-tailed HA?     

 
3) Sample statistics (give the name of each) 
  

S X/N = 
 

 
 

  = 

 

 
 

 4) Test statistic 
 

  

 

X =

SS = X − X( )∑
2

=

s =
SS

n −1

s
X
=

s

n
=

t =
X − µ

s
X

=

Student Score   
A 7   
B 8   
C 8   
D 9   
E 9   
    
    

 µ-1-2 1 2
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5) Compare t-observed to t-critical 
 a. Is tobs in critical region? 
 b. Which has the larger absolute value? 
 
 
6) Decide about null hypothesis 
 a. Reject or fail to reject H0? 
 
7) Conclude about relationship 
 a. Support an effect or not? 
 b. If so, calculate effect size  

 
 
 

 
Worksheet (including formulas): Paired-Samples t-test 
 
The paired (or related) samples t-test is used when two groups of paired participants are 
tested or one group of participants is tested twice. It should be run in SPSS, but it can be 
run in Excel, which returns only the p-value. 
 
Steps for conducting a paired samples t-test 

Same as for one sample t-test, except hypotheses are about differences between 
means and you compute sample statistics for differences) 

 
Example: Here is data illustrating comparing college student's motivation scores before 
and after Thanksgiving break to see if there is an effect of a week off school.  
 
 
 
 
 
 
 
 
 
 
1) Hypotheses 
 
H0:  
 
HA:  
 
2) Criterion (shade in critical region) 
 

a. a =  

Student Before After    

A 65 70    
B 68 69    
C 50 55    
D 75 73    
E 80 82    
      

 µ-1-2 1 2
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b. 1- or 2-tailed HA? 
 

3) Sample statistics (give the name of each)  
 

 =  

 
 = 

 

 

 = 

 
4) Test statistic 
Remember that the mean (µD) we are testing our hypothesis against is zero (0) because 
H0 predicts no difference. 
 

            
 

 
5) Compare t-observed to t-critical 

a. Is tobs in critical region? 
b. Which has the larger absolute value? 

 
6) Decide about null hypothesis 
 a. Reject or fail to reject H0? 
 
7) Conclude about relationship 
 a. Support an effect or not?  
 b. If so, calculate effect size 
 
 
 
 
 
Worksheet (including formulas): Independent-Samples t-test 
 
This design allows for a comparison between two different, unrelated groups of 
participants. Independent samples t-tests do not control for individual differences, and 
thus have more error than a paired samples t-test. It should be run in SPSS and a bar 

D =
D∑
n

SS
D
= D − D( )∑

2

s
D
=

s
D

n
D

t
D
=
D − µ

D

s
D

� 

s
D

=
SS

D

n
D
−1
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graph created. Preliminary reuslts can be run in Excel, but it returns only the p-values for 
tests with and without equal variance without an7 way to test which is the case. 
 
 
Steps for conducting an independent-samples t-test  

Same as for one sample t-test, except hypotheses are about differences between 
means and you compute pooled variance and the standard error of differences. 
 

Example: Here is data illustrating the motivation scores of students in a required course 
compared to scores of a different group of students in an elective course at the same 
level. Let’s test the hypothesis that students in elective courses are more motivated than 
those in required courses. Assume alpha = 0.05. 
  
 
 
 
 
 
 
 
 
1) Hypotheses  
 
H0:  
 
HA:  
 
2) Criterion (shade in critical region) 

 
a. a =  
b. 1- or 2-tailed HA?  
 

 
3) Sample statistics (give the name of each)  
 

    X1     X2 

         

  
 

      
   
df = n – 1       
 

X =
X∑
n

SS = X − X( )∑
2

X1 (Req)   X2 (Elec)   

5   2   
3   4   
4   1   
5   3   
3   2   

 µ-1-2 1 2
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4) Test statistic 
Remember that the difference between means (µ1 & µ2) in H0 is zero (0).  
  

  

5) Compare t-observed to t-critical 
a. Is tobs in critical region? 
b. Which has the larger absolute value? 

 
6) Decide about null hypothesis 
 a. Reject or fail to reject H0? 
 
7) Conclude about relationship 
 a. Support an effect or not? 
 b. If so, calculate effect size using pooled s, which = 

� 

sp
2  
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sp
2
=
SS

1
+ SS

2
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1
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2

s
X
1
−X

2( )
=

s
p

2

n
1

+
s
p

2

n
2

t
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X
1
− X
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1
− µ
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2( )
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IV. Drawing Conclusions about Relationships between 
Variables and Population Parameters 
 
In the previous section we examined research designs in which we typically examined the 
relationship between two variables, a continuous dependent variable (e.g., exam scores) 
and a discrete independent variable (e.g., study method: crammed or distributed).  We 
used the IV to split the DV into two groups and compared the two groups to see if the IV 
had an effect on the DV (i.e., does study method impact exam scores? = did the crammed 
study group differ from the distributed study group). 
 
In this section we’ll discuss how to use the hypothesis testing framework to analyze data 
from different research designs.  The hypotheses for these designs generally test whether 
or not two variables are systematically related to one another.  These analyses are 
commonly found for observational (correlational) research designs.  

 

 
 
In the last portion of the course, we’ll also examine a different kind of inferential 
statistical framework: Estimation.  Within this framework, rather than test hypotheses 
about populations, we try to estimate population parameters using data collected from 
samples. 
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Chapter 20: Hypothesis Testing with Correlation 
 
Back in lab 12 we discussed Pearson’s correlation coefficient (r) as a descriptive statistic 
used to describe the relationship between two continuous variables.  We may also use this 
statistic within the hypothesis testing framework as an inferential statistic.  The 
hypotheses that we test are whether or not there is a relationship and even about what 
direction the relationship has. At the population level, a relationship is represented by rho 
(r), and at the sample level by our familar r. 
 
 So when is a correlation the appropriate analysis? Check the decision tree. 
 
 The logic is the same as before. 

•   Determine the hypotheses, and critical level of alpha. 
•   Find your df, and the critical value of r from a table. 
•   Compute your observed r. 
•   Compare the critical and observed r's, 
•   Make your decision about the null hypothesis. 

 
Example 

 
Suppose that we wanted to know if students who near campus have higher GPAs than 
students who live farther away and commute to campus. We could measure students' 
GPAs and also measure who far away they live by measuring the distance to their 
residence from the middle of the quad. These are the two measured variables we're 
interested in. 

 
Now let's go through our hypothesis testing steps: 
 
Step 1: Hypotheses  

  
 Two-tailed: 

  H0: r = 0; there is no relationship between X & Y. 
  HA: r ≠ 0; there is a relationship between X & Y. 
 

We are making our predictions as a comparison with 0, because 0 would indicate no 
relationship.  However, close inspection of the example (“to know if students who 
near campus have higher GPAs than students who live farther away and commute to 
campus”) reveals that a set of one-tailed hypotheses would be more appropriate.  
Here we predict a negative correlation: as distance decreases, GPA increases). 
 
 One-tailed: 
  H0: r ≥ 0; the relationship between X & Y is positive or zero. 
  HA: r < 0; the relationship between X & Y is negative. 
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Step 2: Criterion for decision 
 
We'll use the conventional a = .05. 

 
Step 3: Sample statistics 
 

Here are our sample data: 
 

Subject GPA Distance from campus (in miles) 
A 3.45 1.3 
B 3.03 0.8 
C 2.67 5.7 
D 2.50 0.5 
E 3.16 2.9 
 MeanGPA = 2.96 Meandistance  = 2.24 

 
Recall the deviation formula for a Pearson r statistic. (We’ll focus on this rather than 
the z formula because we need SP to calculate the slope for regression in the next 
chapter.) 

 

 
The denominator of the formula requires us to calculate the sum of squares (SS) for 
each measure individually, and the numerator of the formula requires calculation of 
the sum of products of the two variables (SP).  For a review of how to compute these 
components, see Chapter 12. 
 
For our example, we get 
 

SP = -0.63, SSGPA = .58, SSdistance = 18.39 
 
Plugging these SS and SP values into our r equation gives us 
 

 r = 0-.19 
 

Step 4: Test statistic 
 
Now we need to find our critical value of r using a table as we did for our z and t-
tests.  A table of critical r’s is included at the end of this PIP packet.  We need to 
know our degrees of freedom, because like t, the r distribution changes depending on 
the sample size. For an r-value, 
 

 df = n – 2 
 

What is n? It is the number of individuals in our sample.  Here it is 5; just as in 

� 

r =
SP

SS
X
SS

Y
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within-subjects related-samples t-tests, two scores are being taken for each 
participant, but n refers to the number of participants not scores.  Why subtract 2? 
Because we know two values, X & Y, so we lose two degrees of freedom.   
 
For our example, we have df = 5 - 2 = 3. Now, with df = 3, a = .05, and a one-tailed 
test, we can find rcritical in the table of Pearson r values. 
 
The rcrit = -0.805 (negative because we are doing a one-tailed test looking for a 
negative relationship). Notice in the table that for small degrees of freedom very large 
values of r are needed to be confident of significance. It is preferable to have at least 
30 participants for calculating an r-value. With that sample size, an r-value of about 
.30 is significant at the .05-level. 

 
Step 5: Compare observed to critical test value 
 

 | robs |  <  | rcrit | 
 
The observed r of -0.19 is not in the critical region that begins at -0.805, 

 
Step 6: Decide about null hypothesis  
 
Since the size of the relationship observed in this sample is likely to occur by chance, we 
cannot reject the null hypothesis.  
 

Step 7: Conclude about relationship  
 
We conclude that we have no evidence to support a relationship between GPA and 
distance from campus.   
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Chapter 21: Regression 
 
In the previous chapter, we worked on the correlation between two variables. In this lab 
we are going to extend our knowledge of correlations by looking at a best-fit line 
between two variables. Let’s look at an example of hypothetical data on the relationship 
between ACT scores and college GPA. As you can see there is a pretty strong positive 
relationship between the two variables. Drawing a best fit line through the data can tells 
us even more about the data.   
 

	   	   	  
	  
Some reasons to look at the best-fit line include: 
 

1) In cases of weak relationships, the best-fit line can make the sign of the 
relationship easier to identify 

 
2) The line is like a mean of a set of scores.  Thus, it gives a representative view 
of the data, even when the data points are not shown. 

 
3) The most important purpose of the line is to provide prediction.  A college 
admissions office can tell what GPA an incoming freshman is likely to achieve 
based on their ACT scores.  For example, a student with an ACT score of 24 is 
likely to achieve a GPA of 3.0. 

 
The statistical procedure for calculating the best fitting line is called regression.  The 
best fitting line is then called the regression line.  This line can be expression in an 
equation as well as in a graph.   
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The line can be described by the following linear equation: 

� 

ˆ Y  = bX + a, where 

� 

ˆ Y  = the predicted value of the Y variable, a = the intercept and b = 
the slope.   
 
As you can see in the example above, the line does not cross through every data point. It 
is important to find a line that will differ the least from all the data points, in order to 
reduce error. Thus it is important to identify how well the line actually fits the data 
points. This is done by basically averaging out the distance from each data point to the 
line or finding the least-squares solution, comparable to how we found the variance and 
standard deviation for a single variable. 
 
This is found by comparing the actual value of Y for each data point with the predicted 
value of Ŷ, termed “Y-hat.” 
 
 
 
     
 
 
 
 
        Distance = Y - 

� 

ˆ Y   
 
 
 
 
 
Since some distances will be positive and some will be negative, the second step is to 
square each of the distances and add them together to find the overall squared error. Note 
that this is analogous to the Sum of Squares of deviations, but here we are squaring 
predicted values rather than observed values. 
 
Total squared error = 

� 

SSerror = ∑(Y − ˆ Y )
2  

 

Here are the other relevant formulas.  
 
Regression line = 

� 

ˆ Y  
 

slope =  

 
intercept = 

� 

a = Y − bX  
 

� 

b =
SP

SS
X
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Let’s put that all the together with an example looking at the relationship between 
homework and quiz scores for students in a class. X represents quiz scores and Y 
represents homework scores for 5 students.    
 

X Y 

� 

(X − X )  

� 

(Y −Y )  

� 

(X − X )

� 

(Y −Y )  

� 

(X − X )
2  

7 11 2 5 10 4 
4 3 -1 -3 3 1 
6 5 1 -1 -1 1 
3 4 -2 -2 4 4 
5 7 0 1 0 0 
    16 = SP 10 = SSX 

 
For this example, the mean for X is 5 and the mean for Y is 6. These means were used to 
calculate deviation scores for each variable in the third and fourth columns. For example, 
for the first X data point the distance between 7 and the mean of 5 is 2. The fifth column 
contains the products of deviation scores to calculate the sum of these products (SP) and 
the final column has the total squared deviations for X (SSX). We can now calculate our 
regression equation. 
 

  
= 16/10 = 1.6 

 

 

� 

a = Y − bX  = 6 - 1.6(5) = -2 
 
Thus, the regression equation is:       
 

� 

ˆ Y  =  1.6X -2 
 
We can then use this equation to predict a homework score based on a quiz score. For 
example, if someone scored a 5.5 on the quiz, their predicted homework grade would be  
 

� 

ˆ Y  =  1.6(5.5) -2 =  6.8 
 
There are a few things to keep in mind when using a regression equation for prediction:  
 

1) There is always error in prediction (unless there is a + 1.0 correlation). The 
standard error of the estimate (a value calculated from the total squared error) 
describes the error between the regression line and the actual data points.  

 
2) Regression should not be used to make predictions beyond the range of values 
of X included in the data set. Thus we could not use quiz scores below 3 and 
above 7 in our example from above to predict homework scores. The relationship 
might not be linear beyond these values. 

� 

b =
SP

SS
X
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Finally, keep in mind that the regression equation alone does not tell us how accurate we 
are in our predictions. Thus, we need to compute the standard error of the estimate, in 
order to have an idea of the accuracy in our predictions. Standard error of the estimate is 
similar to standard deviation, just like the regression line is similar to the mean when we 
use one variable. First we need to compute the total squared error. Remember the 
equation for this is: 
 

� 

SSerror = ∑(Y − ˆ Y )
2 

 
Then we’ll divide that by our degrees of freedom to get an average error value (like when 
we calculate the variance). 

� 

SSerror

df
 

 
In the case of regression our degrees of freedom = n – 2. It is n – 2, and not n – 1 because 
we need 2 points to make a straight line. There will be no error between these points and 
the line, so we have 2 restrictions.   
 
Finally we take the square root of the whole thing: 
 
Standard error of the estimate =  
 
 
We’ll use our original example to find the standard error of the estimate.   
 

X Y Predicted Y values 

� 

ˆ Y  =  1.6X -2 
Error 

� 

(Y − ˆ Y )  
Squared Error 

� 

(Y − ˆ Y )
2 

7 11 9.2 1.8 3.24 
4 3 4.4 -1.4 1.96 
6 5 7.6 -2.6 6.76 
3 4 2.8 1.2 1.44 
5 7 6.0 1.0 1.00 
     0 SSerror = 14.40    

 
Note: the sum of errors from a line is 0, just as the sum of deviations from a mean is 0.   
 
Since we have 5 subjects, df = 5 – 2 = 3. 
 
The standard error of the estimate is then  
 

� 

SSerror

df
=
14.4

3
=2.19  

 

� 

s
est

=
SSerror

df
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The value of 2.19 tells us the average distance on the Y axis between the actual data 
points and the predicted regression line.   
     
 Practice	  Questions:	  Set	  13	  

 
 

 (1)	  A	  set	  of	  X	  and	  Y	  scores	  have	  a	  mean	  of	  X	  of	  4,	  SSx	  of	  15,	  mean	  of	  Y	  of	  5,	  and	  SP	  
of	  30.	  	  	  

	   	  
(a)	  What	  is	  the	  regression	  equation	  for	  predicting	  Y	  from	  X?	  
(b)	  What	  are	  the	  predicted	  Y	  scores	  for	  the	  following	  X	  scores:	  3,	  -‐2,	  5,	  6	  

	  
(2)	   Find	   the	   regression	   equation	   for	   predicting	   Y	   from	  X	   for	   the	   following	   set	   of	  

scores.	  (Show	  your	  work	  for	  each	  step)	  
	   	  	  X	  	  	  	  	  	  	  	  	  	  Y	  	  	  	  
	   	  	  0	   	  	  	  	  	  	  9	  
	   	  	  1	   	  	  	  	  	  	  7	  
	   	  	  2	   	  	  	  	  11	  
	  
(3)	  Find	  the	  regression	  equation	  and	  standard	  error	  of	  estimate	  for	  the	  following	  

set	  of	  data.	  (Show	  your	  work	  for	  each	  step)	  
	  
	   	  	  X	   	  	  	  	  Y	  	  	  
	   	  	  4	   	  	  	  	  1	  
	   	  	  7	   	  	  16	  
	  	  	  	   	  	  3	   	  	  	  	  4	  
	   	  	  5	   	  	  	  	  7	  
	   	  	  6	   	  	  	  	  7	  
	  
(4)	  When	  a	  correlation	  is	  close	  to	  +	  1.0,	  then	  the	  standard	  error	  of	  the	  estimate	  will	  

be	   ______.	   When	   the	   correlation	   is	   close	   to	   0,	   then	   the	   standard	   error	   of	  
estimate	  will	  be	  _____.	  

	  
	   (a)	  large,	  small	  
	   (b)	  close	  to	  1.0,	  close	  to	  0	  
	   (c)	  small,	  large	  
	   (d)	  cannot	  tell	  from	  the	  information	  given  
 
ANSWERS	  ON	  P.	  172	  
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Chapter 22: Chi-Square Test 
 
The last test we’ll discuss is used for different types of data than those we’ve been 
looking at. So far our tests have been used for continuous data (i.e., data from interval 
and ratio scales). The chi-square test for independence is used when you are testing 
hypotheses with categorical (i.e., nominal) data. This test is done on data that have been 
organized using cross tabulation.  The test is named after the Greek letter chi, and we’ll 
see later that it is a squared value; the lower-case symbol is c2.  The theoretical 
distribution is different from those for z, t, and r tests. 
 
Suppose, for example, that we want to know whether people with different work statuses 
(e.g., full-time, retired) differ in happiness? This amounts to tabulating frequencies for 
work status and happiness. Cross tabulation or crosstabs gives frequencies for one 
variable separately for each level of another variable. In other words, cross tabulation is a 
statistical technique used to display a breakdown of the data by these two variables (that 
is, it is a table that displays the frequency of different majors broken down by gender). To 
create the crosstabs, we count up the number of people that fit each category.  
 
Let’s look at some data. Suppose that we surveyed people and asked them about their 
work status (full-time or retired) and if they were happy (yes or no). Listed below are the 
results of the survey: 
 

Subject #  Word Status  Happy 
  1   full-time  yes 
  2   retired   yes 
  3   retired   no 
  4   retired   yes 
  5   full-time  no 
  6   full-time  yes 
  7   retired   no 
  8   full-time  yes 
  9   retired   no 
  10   retired   no 
 11   full-time  no 
 12   full-time  yes 
 13   retired   yes 
 14   full-time  yes 
 15   retired   no 
 16   retired   no 
 17   full-time  no 
 18   full-time  yes 
 19   full-time  yes 
 20   retired   no 
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From these data, we can create a table with work status in the columns and happiness in 
the rows by counting the number of subjects in each category. The observed frequencies 
go in the body of the table. Our crosstabs would be: 
 

   Work status 
  Happiness     Full-time     Retired 
       Yes            7           3 
        No            3           7 

 
For example, this table tells us that 7 people in our survey were full-time workers and 
happy. So cross tabulation is a way to organize data. 
 
We can also use crosstabs as a first step in conducting a hypothesis test on our two 
categorical variables to see if they are related to one another (i.e., to see if happiness 
depends on work status and vice versa). What we’re learning about here is if a 
relationship exists, not if one variable causes a change in the other variable. The c2 test 
can help us test for a relationship in this case. It works by comparing observed 
frequencies with the frequencies that are expected if there is no relationship between the 
variables (i.e., if they are independent). A significant c2 means there is a relationship 
because the observed and expected frequencies are sufficiently different. 
 
So let’s work through the hypothesis testing steps for c2 and our example data above. 
 
Step 1: Hypotheses 
  
Our null hypothesis for c2 is that there is no relationship, which is the same as saying the 
variables are independent. The hypotheses can be stated either way. 
 
H0: Happiness is independent of work status OR No relationship between happiness and 

work status 
Ha: Happiness is NOT independent of work status OR There is a relationship between 

happiness and work status 
 
Step 2: Criterion for decision 
 
We'll set a = 0.05 
 
Step 3: Sample statistics 
 
Crosstabs: 
 

 Work status 
  Happiness     Full-time     Retired 
       Yes            7           3 
        No            3           7 
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These are our observed data.  We now have to use these data to estimate the frequency of 
the cells expected by chance (if there is no relationship).   
 

Part 1: Obtain row and column totals, also called the marginals (in bold below).  
  

Work status/Happiness Full-time Retired Marginals 
       Yes            7           3      10 
        No            3           7      10 
Marginals          10         10  
  

Part 2: Compute the expected frequencies (fe) to add to the table. Calculate these 
values by multiplying the appropriate marginals and dividing by the total number 
of subjects.  These are how many subjects that would be expected from the 
marginals if there is no relationship between the variables.  Another version of 
same formula takes the proportion (or percentage) in the row for a cell. 
 

or 

� 

f
e

=
f
row

n
∗ f

column

 

   
 

-   Full-time/Yes = fe = (10*10)/20 = 5 
-   Full-time/No = fe = (10*10)/20 = 5 
-   Retired/Yes = fe = (10*10)/20 = 5 
-   Retired/No = fe = (10*10)/20 = 5 

 
NOTE: These numbers will not always be the same, as they are in this example 
because the marginals are equal! 

 
 

Work status/Happiness Full-time Retired  
       Yes     Observed 
                  Expected 

           7 
           5 

          3 
          5 

     10 

        No     Observed 
                  Expected 

           3 
           5 

          7 
          5 

     10 

          10         10  
 

 
Step 4: Test statistic 
 
Now we’re ready to calculate the c2 test statistic from the observed (fo) and expected (fe) 
frequencies.  We’re going to treat each cell as a test case and add them up.  The formula 
is the familiar observed differences over expected difference by chance. 
 

� 

fe =
frow fcolumn

n
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� 

χ 2
= ∑

( fo − fe )
2

fe
 

 
So for our example, we have: 
 
 

� 

χ2 = ∑
(7 − 5)2

5
+
(3− 5)2

5
+
(3− 5)2

5
+
(7 − 5)2

5  
      = 4/5 + 4/5 + 4/5 + 4/5 = 3.2

 

  
 
Degrees of freedom  
df = (#Columns - 1) * (#Rows - 1)  
df = (2-1)(2-1) = 1 
 
Step 5: Compare observed to critical test value. 
 
Go to the c2  table and find the critical value. 
 
For this example, with df = 1, and a = 0.05, the critical c2 value from the table is 3.84.  
As with other test statistics, as the difference between observed and expected values gets 
larger, the observed test value gets larger and the probability of such a value gets smaller.  
In this case, our c2  value too small to be unlikely by chance.  
 

|c2 
observed |  <  |c2

critical | 
 
Step 6: Decide about null hypothesis 
 
Since the observed c2 is not in the critical region, we cannot reject H0.  
 
Step 7: Conclude about relationship 
 
We have no evidence here of a relationship between happiness and work status. 
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 Practice	  Questions:	  Set	  14	    
 (1) New research seems to suggest that kids raised in homes with pets tend to have fewer 

allergies than kids raised without pets. A survey study was conducted to test this finding. 
A sample of 100 adults were asked if they had allergies (yes/no) and how many pets they 
had between the ages of 1 and 10 years old (0/1/2 or more). Use the crosstabs table below 
to conduct a chi-square test with a =.05. Indicate whether these data support the previous 
findings or not. 
 
# Pets/Allergies 0 1 2 or more 
   No  10 25 35 
   Yes 15 10 5 

 
(2) For the following voting survey data, create a crosstabs table and then conduct a test 

to determine if the two variables are related. Use a = .01. 
 Gender     Plans to Vote For 
 Male  Bush 
 Male  Bush 
 Female  Kerry 
 Female  Bush 
 Female  Kerry 
 Male  Kerry 

             Male  Bush 
 Female  Kerry 
 Female  Bush 
 Male  Kerry 
 Male  Bush 

Female  Bush 
Male  Kerry 
Female  Kerry 
Male  Bush 
Female  Kerry 
Male  Bush 
Male   Kerry 
Female  Bush 
Female  Bush 
Male  Kerry 
Female  Kerry 
Male  Bush 
Female  Kerry 
Female  Bush 
Male  Bush 
Female  Kerry 
Male  Bush 
Female  Kerry 

            Male   Bush                       ANSWERS ON P. 173 
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Chapters 23: Estimation of Population Means 
 
Everything that we did in the last four chapters is related to this chapter.  However, the 
logic of what we are doing here, estimation, is different from the logic used in hypothesis 
testing. 
 
In the last several chapters we tested the a null hypothesis that basically asked the 
question, is this different from that?  Estimation asks a different question.  With 
estimation we are making educated guesses as to the value of a population parameter. 
 
When do we use estimates? 
 

1) After we do hypothesis testing and have rejected the H0.  
 “So we reject that there is no difference due to the treatment, but we still 
want to know how much of a difference is there” 

2) You just want to know some basic information about a population, but you 
can’t measure the whole group, so instead you take a sample. 

 
In fact, we’ve already done a lot of estimating. Each time we computed a t-statistic, we 
used an estimate of the variability of the population.  Whenever we found a significant 
difference, we estimated the effect size. In this section we’ll extend our use of estimation 
to include estimates of the population mean. 
 
Two kinds of estimates of the population mean. 
 

1) point estimates of the mean: using a single number as your estimate of an 
unknown quantity 
2) interval estimates (confidence intervals) of the mean: using a range of values 
as your estimate of an unknown quantity.  When an interval is accompanied with 
a specific level of confidence (or probability) , it is called a confidence interval. 

 
Both kinds of estimates are determined by the same equation, the difference is that for the 
point estimates, we’ll just compute a single number (that’s why it is called a point 
estimate), but for the interval estimate, we’ll compute an interval between two points. 
 
Let’s start at the conceptual level.  Consider the following population distribution. 
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Suppose that we guess that the mean is 85?  How confident are we in this guess? 
 
Suppose that we guess that the mean is somewhere between 71 & 99?  How 
confident are we in this guess? 

 
Hopefully, you will think that you’d be more confident in the range.  This 
difference corresponds to the difference between point and interval estimations. 

   
 point estimate interval estimate 
 
Disadvantages 

it doesn’t convey any sense 
of how much precision we 
have in making that 
estimate.   

we often need to have one 
specific value, a range of 
possible values just may not 
be enough  

 
Okay, now let’s begin with a point estimate of the mean.  What will be the best single 
estimate of the population mean?   
  
The mean of the distribution of sample means 
 
  population     sample means 

 
 
However, suppose that all we have is a single sample.  Now what is our best guess? 
 The sample mean. So how good is it? 
1) It is the only piece of evidence that we have, so it is our best guess. 
2) Recall, that most of our sample means will be pretty close to the population mean, so 
we have a good chance that our sample mean is close. 
 
How can we get an estimate where we’d have a better chance of being right?  Instead of 
giving a point estimate, we can estimate an interval. Again, consider the distribution of 
sample means.  If we think in terms of z-scores, and pick a range of ±1 z-units. Then 
what we can say is that about 68% of the possible means are within that range.  So we 
can be pretty confident that our population mean fits into that range. 
 
Now let’s formalize things a bit.  Let’s first talk about the logic of estimation, and then 
move onto the actual formulas that we’ll use. 
 

Step 1:  You begin by making a reasonable estimation of what the z (or t) value 
should be for your estimate.   
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For a point estimation, you want what?  z (or t) = 0, right in the middle.  For an 
interval, your values will depend on how confident you want to be in your 
estimate 

 
Step 2:  You take your “reasonable” estimate for your test statistic, and put it into 
a formula and solve for the unknown population parameter.  Because you use a 
reasonable estimate for your test statistic, then you should get a reasonable 
estimate of the population parameter. 

 
The formula  
It is the same one(s) that we’ve been using all along, but we do a little algebra to move it 
around. Since, instead of solving for an observed z or t score, we are solving for the 
population parameter, we change to the mean of the DSM; that is how we will estimate 
the population mean. Since we need to enter a known z or t scores; we use a critical score 
corresponding to the confidence interval we have selected.  We look up a critical test 
value, which can be plus or minus.  This is so we get a high and low value for our 
interval.  
 
For an example, let’s assume that 

� 

X  = 85, s = 5, n = 25 
 

� 

z
X 

=
X − µ

σ
X 

       à      

� 

z
X 
(σ

X 
) = X − µ        à      

� 

µ
X 

= X ± zcrit (σX 
)  

 
Step 1: To estimate µ, we make a reasonable estimate of z.  Our best guess will be 
when z = 0.  So, we plug that into the formula. 
 

� 

σ
X 

=
σ

n
=

5

25
=1 

 

� 

µ
X 

= X ± 0(1) = 85 
 

Step 2: We see that 

� 

µ
X 

= X  is our most reasonable estimate. 
 
Okay, that’s the formula for point estimation.  What about for an interval estimation? 
We use the same formula, but we note the two changes above.  So, the first thing that we 
want to do is decide how confident do we want to be in our estimate.  Let’s chose 95%, 
which is analogous to using .05 for an alpha level.  So we need to go to the unit normal 
table and figure out between what two z-scores do 95% of the sample means lie.  Since 
5% won’t be between, we want two tails with 2.5% in each, so the z-scores are ±1.96. 
 

� 

µ
X 

= X ± zcrit (σX 
)= 

� 

85 +1.96(
5

25
) = 86.96  

� 

µ
X 

= X ± zcrit (σX 
)= 

� 

85 −1.96(
5

25
) = 83.04  
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Chapter 24: Estimation Combined with Hypothesis Testing 
 
Our initial example of population estimation used z-scores.  The same logic applies to 
using t-statistics.   
 
How do you know which test statistic to use?  We follow the same logic as before: It 
depends on the design. 
  

How many groups and scores are sampled? 
If one group with one score, then is the population standard deviation known?   

  If so, then use the z-test.    
  If not, then use the one-sample t-test. 
 If one group and two scores per person, then use related-samples t-test. 
 If two groups, then are the samples independent? 
  If independent.  then use independent-samples t-test 
  If dependent, then use related-samples t-test 
 If more than two groups, then an F-test is needed, which goes beyond this course. 
 
Formulas for estimation of a population mean 
 

One sample (s known) 

� 

µ
X 

= X ± zcrit (σX 
)   

 
 One sample (s unknown)  

� 

µ
X 

= X ± t
crit

(s
X 
)   

 
 Related samples  

� 

µ
D 

= D ± tcrit (sD 
) 

 
Independent samples    

� 

µ1 − µ2 = X 1 − X 2 ± tcrit (sX
1
−X
2

)  

 
 Note: when using t-tests, make sure that you use the appropriate dfs. 
 
Examples 
 
One-sample t-test. Consider the data given above, 

� 

X  = 85 and n = 25, with the sample s 
= 5. There are 24 dfs, so the critical t-value for p = .025, 1-tailed (.05 total error) is 
±2.064. 
 

 
 
 

= 82.94 to 87.06. 
 
Related-sample t-test. Dr. S. Beach reported on the effectiveness of cognitive-
behavioral therapy as a treatment for anorexia.  He examined 12 patients, weighing each 
of them before and after the treatment.  Estimate with 95% confidence the average 

� 

µ
X 

= X ± t
crit

(s
X 
) = 85 ± (2.064)(

5

25
) = 85 ± 2.064
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population weight gain for those undergoing the treatment. Differences (posttreatment - 
pretreatment weights) are 10, 6, 3, 23, 18, 17, 0, 4, 21, 10, -2, 10. They average 10 and sD 
= 8.24. 
 

� 

s
D 

=
sD

n
=
8.24

12
= 2.38   

 
For df = 11, p = .025, 1-tailed (.05 total error),  tcrit=±2.201  
       

� 

µ
D 

= D ± tcrit (sD 
) =10 ± (2.201)(2.38) =10 ± 5.24 

 
= 4.76 to 15.24   
 
Independent-samples t-test.  Dr. Mnemonic develops a new treatment for patients with 
a memory disorder.  He randomly assigns 8 patients to one of two samples.  One sample 
(A) receives the new treatment while the other (B) receives the old treatment. He then 
tests both groups with a memory test to see if there is a difference. Estimate with 95% 
confidence the population difference between the two groups.  Data provided is 

� 

X A = 44.5,sA = 7.19,X B = 50,sB = 9.13. 
 

  
= 67.52 
 

 

� 

 
 
 

For df = 6, p = .025, 1-tailed (.05 total error),  tcrit=±2.45. 
 

� 

µ1 − µ2 = X 1 − X 2 ± tcrit (sX
1
−X
2
) = 5.5 ± (2.45)(5.81)

 
=  -8.73 to 19.73

 

 
Combining estimation and hypothesis testing 
 
Since the same formula is being used, it may have occurred to you that we could conduct 
population estimation and hypothesis testing in combination.  That is the case. 
 
In the final example above, the CI (95%) included 0. What does that signify? In 
hypothesis testing for independent samples, 0 is the mean of the population of differences 
for the null hypothesis. That is, if there is no difference between the two samples, we 
expect a mean difference for the distribution of sample means to be 0.  If 0 is within the 
confidence interval, it is a likely value, so we cannot reject the null hypothesis. 
 
If we conduct the hypothesis test for the same example, we reach the same conclusion. 

� 

sX
1
−X
2

=
2* s

2
p

n
=
2*67.52

4
= 33.76 = 5.81



 

 134 

 
 
 
 

For df = 6, p = .05, 2-tailed,  tcrit=±2.45 (note that this is the same tcrit for the 95%CI). 
 
Since tobs < tcrit , we fail to reject the null hypothesis.  There is more than a 5% chance that 
the difference could result from sampling error in the population of differences (µ = 0) 
posited by the null hypothesis.   
 
We can state as a general rule that if the confidence interval for estimating the population 
mean includes the mean posited by the null hypothesis (as long as both are using the 
same critical test value), we cannot reject the null hypothesis. 
 
You have probably guessed that if the confidence interval does not include the mean 
posited by the null hypothesis, then we can reject it. That is correct (as long as both are 
using the same critical test value). 
 
The related-samples example is such a case, although its1-tailed hypothesis test creates a 
complication.  The 95% CI was from 4.76 to 15.24 for weight gain resulting from the 
new treatment for anorexia. That the mean of 0 predicted by H0 is not included suggests 
that we can reject the null hypothesis.  

 
 
 
 

We compare this observed t to t a critical t for df = 11, p = .05, 1-tailed:  tcrit=±1.796.  
(The critical value for estimation was 2.201.  This complication occurs when running a 1-
tailed hypothesis test and estimating a 95% CI.  If it were a 90% CI, the critical test 
values would be the same.)  
 
Since tobs > tcrit , we reject the null hypothesis.  There is less than a 5% chance that the 
difference could result from sampling error in the population of differences posited by the 
null hypothesis (µ ≤ 0). 
 
Inferences from one or two populations 
 
When we estimate the mean of a population, we are working with only one population, 
the one we are making inferences about (from the sample). In contrast, when we test 
hypotheses, we are working with two populations, the one posited by the null hypothesis 
and the alternate one posited by our research hypothesis. 
 
The figure below illustrates the case of failing to reject the null hypothesis. Each 
population is shown with its mean and 2.5% cutoffs in the tails. On the left is the 
population inferred from the sample, centered on its mean.  On the right are the two 
populations in hypothesis testing.  Remember that we test the null hypothesis.  In this 

� 

t
obs

=
(X 1 − X 2) − (µ1 − µ2)

s
X 1 − X 2

=
5.5 − 0

5.81
= 0.95

� 

tobs =
D − µ

D 

(s
D 
)

=
10

2.38
= 4.2
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case, the sample mean falls well within the cutoffs of the H0 population, so we cannot 
reject the null hypothesis.  Note that the confidence interval of the estimated mean of the 
sample’s population includes the mean of the H0 population.  In this case, we are deciding 
that there is only one population, the H0 population, and its mean is known, so we do not 
need to estimate it from the sample. 

 
The figure below illustrates the opposite case: rejecting the null hypothesis.  The 
population on the left is the same as above, but on the right the two populations for 
hypothesis testing are more separated than above.  In this case, the sample mean falls 
outside the cutoffs of the H0 population, that is, in the critical region. Thus, we can reject 
the null hypothesis.   
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Note that the confidence interval of the estimated mean of the sample’s population does 
not include the mean of the H0 population. In this case, we are deciding that there are two 
populations, the H0 population and the one posited by the alternate hypothesis, and that 
the sample is drawn from this second population.  We need the confidence interval to 
estimate the population mean, and we can calculate the effect size from the distance 
between the means of the two populations. 
 
With this figure, which is on the cover of this text, we have reached the end of our 
coverage of descriptive and inferential statistics in this course.  Subsequent courses 
extend the concepts we have covered to comparison of three or more means with the 
analysis of variance and F tests, multivariate correlation and regression for three or more 
variables, and multivariate prediction models.  You now have entered the modern world 
of reasoning and decision-making using statistics.  Your statistical knowledge and skills 
should be of regular use to you as an educated person in everyday living and in your 
career. 
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 Practice	  Questions:	  Set	  15	  
	  

 

 (1)	  A	  sample	  of	  n	  =	  25	  scores	   is	  obtained	  from	  an	  unknown	  population.	   	  The	  sample	  
has	  a	  mean	  

� 

X 	  =	  200	  and	  a	  standard	  deviation	  s	  =	  20.	  
(a)	  Use	  the	  sample	  data	  to	  compute	  a	  90%	  confidence	  interval	  (CI)	  estimate	  of	  the	  

population	  mean	  
(b)	  Use	  the	  sample	  data	  to	  compute	  an	  80%	  CI	  estimate	  of	  the	  population	  mean.	  
(c)	  Describe	  the	  relationship	  between	  level	  of	  confidence	  of	  the	  estimate	  and	  the	  

width	  of	  the	  confidence	  interval.	  
	  

(2)	  Two	  groups	  of	  pollsters	  ask	  voters	  how	  many	  political	  commercials	  they	  had	  seen	  in	  
the	  last	  month.	  	  
(a)	  The	  first	  group	  asked	  a	  sample	  of	  64	  voters	  and	  had	  a	  sample	  mean	  

� 

X 	  =	  200	  
and	  a	  standard	  deviation	  s	  =	  20.	  Compute	  a	  95%	  CI	  estimate	  of	  the	  population	  
mean.	  

(b)	  The	  second	  group	  asked	  a	  sample	  of	  36	  voters	  and	  had	  a	  sample	  mean	  

� 

X 	  =	  200	  
and	  a	  standard	  deviation	  s	  =	  20.	  Compute	  a	  95%	  CI	  estimate	  of	  the	  population	  
mean.	  

(c)	   Compare	   the	   confidence	   intervals	   for	   the	   two	   groups.	  Which	   gives	   a	   “better”	  
estimate	  of	  the	  population	  mean.	  Explain	  what	  you	  mean	  by	  “better.”	  

	  
(3)	  Dr.	  Brainiac	  conducted	  an	  experiment	  examining	  how	  people	  use	  examples	  to	  solve	  
problems.	  He	  asked	  two	  groups	  of	  participants	  to	  solve	  the	  same	  problem.	  The	  groups	  
differed	  with	  respect	  to	  what	  kind	  of	  sample	  problem	  they	  were	  given	  prior	  to	  solving	  
the	   test	   problem.	   The	   first	   group	  was	   given	   a	   sample	   problem	   that,	   on	   the	   surface	  
seemed	  very	  different,	  but	  the	  underlying	  solution	  was	  analogically	  similar	  to	  that	  of	  
the	   test	   problem.	   The	   second	   group	   received	   a	   sample	  problem	   that	   on	   the	   surface	  
seemed	   related	   to	   the	   test	   problem,	   but	   had	   a	   very	   different	   solution.	   Dr.	   Brainiac	  
measured	  how	  many	  seconds	  were	  required	  to	  solve	  the	  test	  question.	  
	  

Analogically	  similar	  
solution	  group	  

Different	  solution	  group	  

n	  =	  15	  

� 

X =	  66	  sec.	  
SS	  =	  2030	  

n	  =	  10	  

� 

X =	  78	  sec.	  
SS	  =	  1420	  

	  
(a)	  Compute	  a	  point	  estimate	  of	  the	  mean	  difference	  between	  the	  two	  groups.	  
(b)	  Compute	  a	  95%	  CI	  of	  the	  mean	  difference	  between	  the	  two	  groups.	  
(c)	  Can	  Dr.	  Brainiac	  reach	  a	  conclusion	  from	  the	  results	  of	  his	  experiment?	  
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Study Guide for Exam 4 and Final Exam 
 
Listed below are many of the concepts discussed in the Drawing Conclusions Part II 
component of the course.  Remember that while Exam 4 covers essentially what is new 
since the last exam (you still need to from before that the new material builds upon, e.g., 
means and standard deviations), the Final exam is considered cumulative, and covers all 
of the course material (so study all four of the review pages). 
 
Terms 

Best fit line 
Chi-square test of independence 
Confidence intervals 
Cross tabulation 
Estimation 
Least squares linear regression 
Margin of error 
Pearson’s correlation coefficient 
Point estimates 
Rho (r) 
Scatterplot 
Standard error of the estimate 
Total squared error 

 

 
Formulas (provide the name of each and what it is used for) 
 

 

 

� 

ˆ Y  = (X)(slope) + (intercept) = Xb + a = bX + a 
  

 

 

� 

a = Y − bX  
 

� 

SSerror = ∑(Y − ˆ Y )
2 

 

 

 or 

� 

f
e

=
f
row

n
∗ f

column

 

 

� 

r =
SP

SS
X
SS

Y

� 

b =
SP

SS
X

� 

fe =
f
column

frow

n
� 

s
est

=
SSerror

df
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� 

χ 2
= ∑

( fo − fe )
2

fe
 

 

� 

µ = X ± zcrit (σX 
)  

 

� 

µ = X ± t
crit

(s
X 
) 

 

� 

µ
D

= D ± tcrit (sD 
) 

 

� 

µ1 − µ2 = X 1 − X 2 ± tcrit (s(X
1
−X
2
))   

 
Finding critical values in distribution tables 
 
r, 1-tailed, a = 0.05, df =28; r = 
r, 2-tailed, a = 0.05, df =28; r =  
r, 1-tailed, a = 0.01, df =28; r = 
r, 2-tailed, a = 0.01, df =28; r = 
c2, a = 0.05, df = 2; c2 = 
c2, a = 0.01, df = 2; c2 = 
 
Sample problems 
 
Complete the five steps for hypothesis testing for each problem.  When the null 
hypothesis is rejected, calculate the effect size and estimate the population mean. Assume 
a = 0.05 for all hypotheses and the 95% confidence interval for estimation. BE 
COMPLETE.  
 
1. The 30 students taking statistics one semester have SAT quantitative scores averaging 

 = 480. Given the known population parameters (µ = 500, s = 100), is the class below 
average on this test? What if the same mean had been from two classes totaling 100? 
Extra credit: Explain any difference in outcome. 
 
2. The same 30 students average  = 98 (s = 5) on a mathematics test with a known 
population mean µ = 100. Is the class below average on this test?  
Extra credit: Explain any difference in outcome for the significance of the class’s 2-point 
difference on this test compared to its 20-point difference on the SAT. 
 
3. The same 30 students kept a log, which revealed that they studied statistics 4 hours per 
week before the midterm and averaged an increase of = 2 hours per week after the 
midterm. The standard deviation of the 30 pairs of difference scores (after-before) is sD = 
1. Did their studying increase significantly?  

� 

X 

� 

X 

� 

D 
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Extra credit: How do the critical t-values compare for testing the hypothesis and 
estimating the population parameter? When are they the same and when are they 
different? 
 
4. The two lab sections (n = 15 in each) of the above class were compared on a common 
exam. The data for section 1 are  = 80, SS = 170, and for section 2 are  = 78, SS = 
200. Is there a statistically significant difference?  
Extra credit: Explain any difference in outcome for the significance of the sections’ 2-
point difference on this exam and the class’s 2-point difference from the norm on a 
mathematics test (problem 2). 
 
5. The 30 students in the statistics class kept a log of study hours (noted above) to 
determine if they are positively related to exam scores (noted above). Data for study 
hours are  = 5 and SSX =30. Data for exam scores are  = 79 and SSY =185. SP = 25 
and SSerror = 270. Find the correlation and the amount of variance accounted for, and 
test for significance. Find the regression line and standard error of the estimate. What are 
the predicted exam scores for the following amounts of weekly study: 0, 3, 5, and10?  
Extra credit: Why does the regression predict only a few more points on the exam when 
study time is doubled?  
 
6. Test the relationship between grades in the statistics course and graduating as a 
psychology major. The following workspace provides data from one semester’s students 
followed until graduation. 
 
 
 
Psych  
Graduate 

Grades  
A B C D F/W  

Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp  
Yes 20  30  20    5   0   
No  5  25  40  25  10   
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V. Statistical Tables 
 
The Unit Normal Table (z) 
 

  Second decimal place of z 

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0  .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641 

0.1  .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247 

0.2  .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859  

0.3  .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483  

0.4  .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121 

0.5  .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776  

0.6  .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451  

0.7  .2420 .2389 .2358 .2327 .2297 .2266 .2236 .2206 .2177 .2148  

0.8  .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867  

0.9  .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611 

1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379 

1.1  .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170  

1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985 

1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823  

1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681 

1.5  .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559  

1.6  .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455  

1.7  .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367  

1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294  

1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233 



 

 142 

2.0  .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183 

2.1  .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143 

2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110  

2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084  

2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064 

2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048  

2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036  

2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026  

2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019  

2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014 

3.0 0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010 
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The t Distribution 
      
 Proportion in One Tail 
 0.25 0.10 0.05 0.025 0.01 0.005 
 Proportion in Two Tails 
df 0.50 0.20 0.10 0.05 0.02 0.01 
1 1.000 3.078 6.314 12.706 31.821 63.657 
2 0.816 1.886 2.920 4.303 6.965 9.925 
3 0.765 1.638 2.353 3.182 4.541 5.841 
4 0.741 1.533 2.132 2.776 3.747 4.604 
5 0.727 1.476 2.015 2.571 3.365 4.032 
6 0.718 1.440 1.943 2.447 3.143 3.707 
7 0.711 1.415 1.895 2.365 2.998 3.499 
8 0.706 1.397 1.860 2.306 2.896 3.355 
9 0.703 1.383 1.833 2.262 2.821 3.250 
10 0.700 1.372 1.812 2.228 2.764 3.169 
11 0.697 1.363 1.796 2.201 2.718 3.106 
12 0.695 1.356 1.782 2.179 2.681 3.055 
13 0.694 1.350 1.771 2.160 2.650 3.012 
14 0.692 1.345 1.761 2.145 2.624 2.977 
15 0.691 1.341 1.753 2.131 2.602 2.947 
16 0.690 1.337 1.746 2.120 2.583 2.921 
17 0.689 1.333 1.740 2.110 2.567 2.898 
18 0.688 1.330 1.734 2.101 2.552 2.878 
19 0.688 1.328 1.729 2.093 2.539 2.861 
20 0.687 1.325 1.725 2.086 2.528 2.845 
21 0.686 1.323 1.721 2.080 2.518 2.831 
22 0.686 1.321 1.717 2.074 2.508 2.819 
23 0.685 1.319 1.714 2.069 2.500 2.807 
24 0.685 1.318 1.711 2.064 2.492 2.797 
25 0.684 1.316 1.708 2.060 2.485 2.787 
26 0.684 1.315 1.706 2.056 2.479 2.779 
27 0.684 1.314 1.703 2.052 2.473 2.771 
28 0.683 1.313 1.701 2.048 2.467 2.763 
29 0.683 1.311 1.699 2.045 2.462 2.756 
30 0.683 1.310 1.697 2.042 2.457 2.750 
40 0.681 1.303 1.684 2.021 2.423 2.704 
60 0.679 1.296 1.671 2.000 2.390 2.660 
120 0.677 1.289 1.658 1.980 2.358 2.617 
∞ 0.674 1.282 1.645 1.960 2.326 2.576 
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Critical Pearson r Values 
  
 One-tailed test 
 0.05 0.02 0.01 0.005 
 Two-tailed test 
df 0.10 0.05 0.02 0.01 
1 .988 .997 .9995 .9999 
2 .900 .950 .980 .990 
3 .805 .878 .934 .959 
4 .729 .811 .882 .917 
5 .669 .754 .833 .874 
6 .622 .707 .789 .834 
7 .582 .666 .750 .798 
8 .549 .632 .716 .765 
9 .521 .602 .685 .735 
10 .497 .576 .658 .708 
11 .476 .553 .634 .684 
12 .458 .532 .612 .661 
13 .441 .514 .592 .641 
14 .426 .497 .574 .623 
15 .412 .482 .558 .606 
16 .400 .468 .542 .590 
17 .389 .456 .528 .575 
18 .378 .444 .516 .561 
19 .369 .433 .503 .549 
20 .360 .423 .492 .537 
21 .352 .413 .482 .526 
22 .344 .404 .472 .515 
23 .337 .396 .462 .505 
24 .330 .388 .453 .496 
25 .323 .381 .445 .487 
26 .317 .374 .437 .479 
27 .311 .367 .430 .471 
28 .306 .361 .423 .463 
29 .301 .355 .416 .456 
30 .296 .349 .409 .449 
35 .275 .325 .381 .418 
40 .257 .304 .358 .393 
45 .243 .288 .338 .372 
50 .231 .273 .322 .354 
60 .211 .250 .295 .325 
70 .195 .232 .274 .302 
80 .183 .217 .256 .283 
90 .173 .205 .242 .267 
100 .164 .195 .230 .254 
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Critical Values of the Chi Square Distribution 
 
 Level of Significance 
df .05 .025 .01 
1 3.84 5.02 6.64 
2 5.99 7.38 9.21 
3 7.81 9.35 11.34 
4 9.49 11.14 13.28 
5 11.07 12.83 15.09 
6 12.59 14.45 16.81 
7 14.07 16.01 18.48 
8 15.51 17.53 20.09 
9 16.92 19.02 21.67 
10 18.31 20.48 23.21 
11 19.68 21.92 24.72 
12 21.03 23.34 26.22 
13 22.36 24.74 27.69 
14 23.68 26.11 29.14 
15 25.00 27.49 30.58 
16 26.30 28.85 32.00 
17 27.59 30.19 33.41 
18 28.87 31.53 34.80 
19 30.14 32.85 36.19 
20 31.41 34.17 37.57 
21 32.67 35.48 38.93 
22 33.92 36.78 40.29 
23 35.17 38.08 41.64 
24 36.42 39.36 42.98 
25 37.65 40.65 44.31 
26 38.88 41.92 45.64 
27 40.11 43.19 46.96 
28 41.34 44.46 48.28 
29 42.56 45.72 49.59 
30 43.77 46.98 50.89 
40  55.76 59.34 63.69 
50  67.50 71.42 76.15 
60  79.08 83.29 88.38 
70  90.53 95.02 100.42 
80 101.88 106.63 100.43 
90 113.15 118.14 124.12 
100 124.34 129.56 135.81 
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VI. Solutions to Practice Problems 
 
 Practice	  Question	  Solutions:	  Set	  1	  

 
 

 (1)	   (a)	  The	  four	  players:	  Dunwoody,	  Osuna,	  Pettitte,	  &	  Sosa	  
	  

(b)	  The	  variables	  are:	  	  
	  	  	  	  	  Name	  (non	  numeric	  values)	  
	  	  	  	  	  Team	  (non	  numeric	  values)	  
	  	  	  	  	  Position	  (non	  numeric	  values)	  
	  	  	  	  	  Age	  (numeric	  value)	  
	  	  	  	  	  Salary	  (numeric	  value)	  
	  
(c)	  Sammy	  Sosa’s	  salary	  is	  listed	  not	  in	  dollars,	  but	  rather	  in	  $1,000s	  (that	  is,	  

he	  was	  making	  not	  $9,000	  a	  year,	  but	  rather	  $9,000,000	  a	  year)	  
	  

(2)	  	  
(a)   In	   the	   first	   situation,	   rather	   than	   randomly	   assigning	   people	   to	   an	  

exercising	   condition,	   the	   researcher	   is	   “observing”	   people	   who	   are	  
already	  exercising	  or	  not	  exercising.	  	  So	  the	  values	  for	  that	  variable	  are	  
pre-‐existing.	   	   In	   the	   second	  example,	   the	   researcher	   randomly	  assigns	  
people	   to	   the	   two	   exercise	   conditions.	   	   So,	   their	   pre-‐existing	   exercise	  
habits	  don’t	  really	  matter,	  there	  is	  an	  equal	  chance	  that	  they’ll	  be	  either	  
group.	  
	  

(b)  The	   additional	   information	   gained	   comes	   from	   the	   fact	   that	   the	  
experimenter	  makes	  the	  decision	  (with	  random	  assignment)	  about	  the	  
people’s	   exercise	   routines.	   	   In	   this	   way	   he	   can	   be	   reasonably	   certain	  
that	  any	  differences	  between	  groups	  are	  due	   to	   the	  assigned	  exercise	  
conditions	   rather	   than	   to	   some	  other	   pre-‐existing	  difference	  between	  
the	  individuals	  in	  the	  two	  groups.	  

	  
(continues	  on	  next	  page)	  
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(3)	  The	  key	  here	  is	  the	  kind	  of	  methods	  used	  by	  the	  researchers.	  
	  

In	  the	  first	  example,	  the	  researcher	  is	  performing	  an	  experiment	  (i.e.,	  assigning	  
rats	  to	  one	  of	  the	  two	  conditions).	   	  So	  the	  researcher	  can	  be	  pretty	  confident	  
that	  any	  differences	  between	  the	  rats	  with	  respect	  to	  body	  size	  are	  likely	  to	  be	  
due	   to	   the	   independent	   variable	   (whether	   they	   got	   the	   hormone	   or	   not).	   In	  
addition,	  the	  researcher	  is	  interested	  in	  the	  effect	  of	  a	  growth	  hormone.	  	  To	  get	  
this,	   he	   measures	   the	   weight	   (size)	   of	   the	   rats.	   	   In	   this	   case	   the	   dependent	  
measure	   (weight)	   is	   pretty	   clearly	   a	   good	   indicator	   of	   the	   effectiveness	   of	  
growth	   hormone	   (there	   is	   a	   huge	   body	   of	   literature	   that	   have	   demonstrated	  
that	  growth	  hormones	  are	  causally	  related	  to	  body	  size).	  
	  
In	  the	  second	  example,	  the	  researchers	  are	  using	  an	  observational	  study.	  	  Here	  
they	   are	   not	   assigning	   mothers	   to	   a	  work	   or	   don’t	   work	   condition.	   So	   it	   is	  
possible	  that	  any	  differences	  found	  between	  the	  two	  groups	  of	  daughters	  may	  
be	  due	   to	   the	  mother’s	   employment	   status,	   or	   to	   other	   differences	   between	  
the	   groups	   (e.g.,	   suppose	   that	   the	   mothers	   who	   chose	   to	   work	   differ	   with	  
respect	  to	  feminity	  and	  that	  they	  pass	  these	  traits	  on	  to	  their	  daughters.	  	  So	  it	  
is	  these	  traits,	  not	  the	  employment	  status	  of	  the	  moms	  that	  count).	  
	  

(4)	  	  
a.   This	   suggests	   that	   there	   is	   an	   order	   to	   the	   scores,	   but	   that	   the	   different	  

scores	   may	   be	   of	   different	   sizes.	   	   This	   means	   that	   the	   scale	   is	   probably	  
ordinal	  (if	  it	  were	  interval	  or	  ratio,	  we’d	  know	  how	  much	  larger	  it	  was).	  
	  

b.   Here	  we	  know	  that	  Peter’s	  is	  larger	  and	  we	  know	  that	  a	  ratio	  of	  the	  scores	  
is	  interpretable.	  	  	  So	  the	  scale	  of	  measurement	  is	  ratio.	  

	  
c.   Here	  we	  know	  what	  scores	  they	  got,	  but	  can’t	  make	  a	   lot	  of	  comparisons	  

(other	  than	  the	  type	  of	  score).	  	  This	  suggests	  that	  the	  scale	  of	  measurement	  
used	  is	  nominal.	  
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	   Practice	  Question	  Solutions:	  Set	  2	  
 

	   (1)	  
(a)  Drug	  type	  

	  
(b)  Drug	  type:	  2	  levels	  –	  get	  the	  drug,	  get	  the	  placebo	  

	  
(c)   Drinking	  behavior	  after	  6	  months	  

	  
(d)  Random	  variable	  (although	  if	  they	  decide	  to	  analyze	  the	  age	  variable,	  then	  

you	   could	   treat	   it	   as	   an	   explanatory	   variable	   and	   the	   entire	   design	   as	   a	  
quasi-‐experiment)	  

	  
(e)  Confound	   variable	   –	   because	   you	   won’t	   be	   able	   to	   know	   whether	   any	  

change	   in	   drinking	   behavior	   is	   due	   to	   the	   drug	   condition	   or	   the	   age	  
condition	  

	  
(2)   	  

The	   hope	   is	   that	   any	   random	   variables	  will	   end	   up	   being	   distributed	   roughly	  
equally	   in	  all	  of	   the	  different	  experimental	  conditions.	   	  That	  way	   they	  do	  not	  
become	  confound	  variables.	  
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 Practice	  Question	  Solutions:	  Set	  3	  
 

 

	   (1)	  	  
(a)	   Answers	   will	   vary.	   One	   example	   of	   a	   “bad”	   sample	   using	   a	   voluntary	  

response	  method	  might	  be	  to	  put	  an	  question	  in	  the	  student	  paper	  asking	  
people	   to	   log	   into	   a	   website	   and	   rate	   how	   they	   feel	   about	   the	   parking	  
situation.	   	   Here	   it	   is	   likely	   that	   those	   with	   strong	   opinions	   (and	   in	   this	  
situation,	   probably	   those	   who	   have	   had	   bad	   experiences)	   are	   likely	   to	  
constitute	  an	  overly	  large	  percentage	  of	  your	  sample.	  

	  
(b)	  Answers	  will	   vary.	  One	  example	  of	  a	  “bad”	  sample	  would	  be	   to	  stand	  by	  

the	  parking	  control	  office	  and	  ask	  students	  who	  go	  in	  an	  out	  of	  there	  what	  
their	   opinion	   of	   the	   parking	   situation	   would	   be.	   	   This	   would	   be	   bad	  
because	   there	   is	   a	   good	   chance	   that	   the	   people	   going	   in	   an	   out	   of	   that	  
office	  may	  be	  a	  biased	  sub	  set	  of	  all	  students	  in	  general	  (e.g.,	  those	  paying	  
parking	  tickets).	  

	  
(c)	   Answers	   will	   vary.	   One	   approach	   would	   be	   to	   get	   access	   to	   all	   of	   the	  

students	   enrolled	   at	   the	   college,	   randomly	   select	   700	   of	   those	   students	  
and	   call	   each	   one	   and	   ask	   their	   opinion	   about	   the	   parking.	   Because	   the	  
respondents	   are	   randomly	   selected	   from	   the	   entire	   population,	   you	   are	  
greatly	  reducing	  the	  potential	  of	  getting	  a	  biased	  sample.	  

	  
(2)	  	  	  (a)	  	  	  1	  /	  35	  =	  0.029	  
	  

	  (b)	  	  25	  /	  35	  =	  0.71	  
	  
	  (c)	  	  	  4	  /	  35	  =	  0.114	  
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	   Practice	  Question	  Solutions:	  Set	  4	  
 

	  

	   (1)	  	  
	  

X	   f	   p	   %	   cp	   cf	  
5	   3	   0.125	   12.5	   1.0	   24	  
4	   5	   0.208	   20.8	   0.874	   21	  
3	   8	   0.333	   33.3	   0.666	   16	  
2	   5	   0.208	   20.8	   0.333	   8	  
1	   3	   0.125	   12.5	   0.125	   3	  
	   N=24	   	   	   	   	  

	  
	  
(2)	  	  

66.6%	  
(3)	  	  

The	  distribution	  is	  symmetrical	  and	  unimodal	  
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	   Practice	  Question	  Solutions:	  Set	  5	  
 

	  

	   (1)	  	  
Mean	  =	  (1+3+5+0+1+3)/6	  =	  2.167	  
Median	  =	  0,1,1,3,3,5	  even	  #	  of	  scores,	  so	  average	  of	  middle	  two	  (1+3)/2	  =	  2.0	  
Mode:	  most	  frequent	  score;	  here	  there	  are	  two,	  1	  &	  3	  
	  
(2)	  	  

	  =	  (10+10+10+10+10+16)/6	  =	  11.0	  
	  
(3)	  	  
If	  5	  points	  were	  added	  to	  every	  score,	  then	  the	  mean	  would	  increase	  by	  5.	  	  So	  the	  
original	  distribution	  must	  have	  had	  a	  mean	  µ	  =	  30	  -‐	  5	  =	  25.	  
	  
(4)	  	  
For	  a	  perfectly	  symmetrical	  distribution,	  the	  mean	  is	  equal	  to	  the	  median.	  	  So	  the	  
median	  would	  be	  =	  30.	  
	  
(5)	  For	  the	  following	  set	  of	  scores,	  identify	  which	  measure	  would	  provide	  the	  best	  
description	  of	  central	  tendency	  and	  explain	  your	  answer.	  
There	  is	  an	  extreme	  score	  (the	  0)	  in	  this	  distribution	  leading	  to	  negative	  skew.	  	  So	  
the	  best	  measure	  of	  center	  would	  probably	  be	  the	  median.	  
	  

	  

	   	   	  
	  	  
	  

€ 

X 
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Problem Solutions: Study Guide for Exam 1	  
 
a. Display results in a frequency distribution table and a histogram.  
 
Describe each abbreviation in the table: 
 
f = frequency of each value 
 
p = probability of value = f/n 
 
% = percentage of value = 100(f/n) 
 
cf = cumulative frequency: add fs from bottom 
 
c% = cumulative percentage: add %s from bottom 
 
 

  
            Frequency Distribution Table         Histogram 
         Shade in the boxes. 
                 Add column headings. 
 X   f  p % cf c% 
  5 1 .1 10 10 100 
  4 2 .2 20 9 90 
  3 3 .3 30 7 70 
  2 2 .2 20 4 40 
  1 1 .1 10 2 20 
  0 1 .1 10 1 10 

   

     
3 

                        

 
2 

                  

 
1 

                 

S         10      1.0      100          0   1    2     3   4    5 
	  
b. Provide the following information about the sample: 
p (X = 3) = .3 
p (X > 0) = .9 
p (0< X< 4) = .6 
p (X > 4) = .1 
 
c. Indicate measure of central tendency for the sample: 
Mean =  27/10 = 2.7 
Median = 3 
Mode =  3 
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	   Practice	  Question	  Solutions:	  Set	  6	  

 
	  

	   (1)	  The	  range	  is	  max	  –	  min	  =	  20	  –	  8	  =	  12.	  
	  
(2)	  Sample	  standard	  deviation	  is	  the	  square	  root	  of	  the	  variance,	  so	  here	  it	  is	  √4	  =	  
2.	  
	  
(3)	  Subtracting	  a	  constant	  from	  every	  score	  in	  the	  distribution	  keeps	  every	  score	  in	  
the	  same	  place	  (relative	  to	  each	  other),	  so	  the	  standard	  deviation	  will	  not	  change.	  
	  
(4)	  	  
Mean	  =	  (1+1+1+3)/4	  =	  1.5	  
SS	  =	  Σ(X-‐ )2	  =	  (1-‐1.5)2	  +	  (1-‐1.5)2	  +	  (1-‐1.5)2	  +	  	  (3-‐1.5)2	  =	  3	  
	  
(5)	  	  
Mean	  =	  (9+1+8+6)/4	  =	  6.0	  
SS	  =	  Σ(X-‐ )2	  =	  (9-‐6)2	  +	  (1-‐6)2	  +	  (8-‐6)2	  +	  	  (6-‐6)2	  =	  38	  
s2	  =	  SS/N	  =	  38/4	  =	  9.5	  
s	  =	  Ös2	  =	  3.08	  
	  

	  

	   	   	  
	  

€ 

X 

€ 

X 
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	   Practice	  Question	  Solutions:	  Set	  7	  
 

	  

	   (1)	  	  
To	  directly	  compare	  them,	  transform	  both	  into	  z-‐scores	  and	  then	  compare	  the	  two	  
z-‐scores.	  

z = (X - µ) 
                     s	  
ACT:	  z	  =	  	  (24	  –	  18)/6	  =	  1.0	  
SAT:	  z	  	  =	  (660	  –	  500)/100	  =	  1.6	  
	  
(2)	  	  
ACT:	  z	  =	  (20	  –	  21)/3	  =	  -‐0.33,	  	  
go	  to	  the	  Unit	  Normal	  Table	  and	  look	  up	  the	  proportion	  associated	  with	  this	  score.	  	  
z(.33)	  ®	  p	  =	  0.3707.	  	  
	  
(3)	  	  
Go	  into	  the	  table	  first	  and	  find	  15%	  (or	  0.1500).	   	  The	  z-‐score	  that	  corresponds	  to	  
this	  is	  1.04	  (.1492	  is	  closer	  to	  .1500	  than	  is	  .1515).	  	  Now	  transform	  this	  z-‐score	  back	  
into	  a	  raw	  SAT	  score.	  	  	  
(z)(s) + µ	  =	  X	  
1.04(100)	  +	  500	  =	  604	  
	  
(4)	  	  
Figure	  out	   the	   z-‐score	   for	   each	   score	   and	   then	  determine	   the	   area	  between	   the	  
two	  scores.	  
SAT:	  z	  =	  (500	  –	  500)/100	  =	  0.0	  	  	  p	  of	  z(0)	  =	  .5000	  
SAT:	  z	  =	  (650	  –	  500)/100	  =	  1.5	  	  	  p	  of	  z(1.5)	  =	  .0668	  
Here	  you	  can	  subtract	  out	  the	  smaller	  tail	  from	  the	  larger	  one	  and	  get	  the	  desired	  
area	   (You	   should	   make	   a	   sketch	   of	   the	   distribution	   and	   shade	   in	   the	   various	  
regions.)	  	  .5	  -‐	  .0668	  =	  0.4332	  
	  
(5)	  	  
What	  is	  your	  percentile	  rank	  if	  you	  have	  an	  ACT	  of	  25.5?	  
Rephrase	  as	  “what	  proportion	  of	  the	  scores	  are	  25.5	  or	  worse?”	  
ACT:	  z	  =	  (25.5	  –	  21)/3	  =	  1.5	  	  	  p	  of	  z(1.5)	  =	  0.0668	  
This	  value	  is	  the	  top	  tail;	  we	  want	  the	  complement	  of	  this,	  so	  we	  subtract	  it	  from	  
1.0,	  which	  is	  0.9332	  or	  93.22	  percentile.	  
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 Practice	  Question	  Solutions:	  Set	  8  
 (1)	  	  

	  
(2)	  A	  line	  through	  the	  points	  would	  be	  positively	  sloping,	  and	  the	  points	  would	  be	  

fairly	  close	  to	  the	  line	  suggesting	  a	  moderate	  to	  strong	  correlation.	  
	  
(3)	  
X	  
(APH)	  

Y	  	  
(Ht)	  

 	   zx 	   	   zy 
	  

zxzy 

68	   65	   	  1.5	   	  2.25	   	  0.66	   -‐0.33	   	  	  0.11	   -‐0.06	   	  -‐0.50	   -‐0.04	  
64	   60	   -‐2.5	   	  6.25	   -‐1.10	   -‐5.33	   28.44	   -‐1.05	   13.33	   	  1.15	  
70	   69	   	  3.5	   12.25	   	  1.55	   	  3.67	   13.44	   	  0.72	   12.83	   	  1.12	  
65	   59	   -‐1.5	   	  2.25	   -‐0.66	   -‐6.33	   40.11	   -‐1.24	   	  	  9.50	   	  0.82	  
67	   72	   	  0.5	   	  0.25	   	  0.22	   	  6.67	   44.44	   	  1.31	   	  	  3.33	   	  0.29	  
65	   67	   -‐1.5	   	  2.25	   -‐0.66	   	  1.67	   	  	  2.78	   	  0.33	   	  -‐2.50	   -‐0.22	  

=	  
66.5	  

= 
65.3	  

	   SSX=	  
25.5	  

	   	   SSY=	  
129.33	  

	   SP	  =	  
	  36	  

Σ=	  
3.12	  

sx=	  
2.26	  

sy=	  
5.09 

	   	   	   	   	   	   	   	  

	  
(4)	  
continued	  on	  next	  page	  
	  
	  
	  
	  

	  	  	  
	  	  	  
	  	  	  
	  	  	  
	  	  	  
	  	  	  
	  	  	  
He

ig
ht
	  

	   72	   	   	   	   	   	   	   	   �	   	   	   	   	   	  
1.2	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
	   70	   	   	   	   	   	   	   	   	   	   	   	   	   	  
0.8	   	   	   	   	   	   	   	   	   	   	   	   �	   	   	  
	   68	   	   	   	   	   	   	   	   	   	   	   	   	   	  
0.4	   	   	   	   	   	   	   �	   	   	   	   	   	   	   	  
	   66	   	   	   	   	   	   	   	   	   	   	   	   	   	  
0	   	   	   	   	   	   	   	   	   	   �	   	   	   	   	  
	   64	   	   	   	   	   	   	   	   	   	   	   	   	   	  
-‐0.4	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
	   62	   	   	   	   	   	   	   	   	   	   	   	   	   	  
-‐0.8	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
	   60	   	   	   	   	   �	   	   	   	   	   	   	   	   	  

	   -‐1.2	   	   	   	   	   	   	   �	   	   	   	   	   	   	   	  
	   	   inch	   60	   	   62	   	   64	   	   66	   	   68	   	   70	   	   72	  
	   z	   	   	   	   -‐1.5	   	   -‐.75	   	   0	   	   .75	   	   1.5	   	   	  
	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Avg.	  Parents	  Height	  

 

€ 

(X − X )

€ 

(X − X )
2

€ 

(Y −Y )

€ 

(Y −Y )
2

€ 

(X − X )

€ 

(Y −Y )

€ 

Y 
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(5)	   r	   =	   0.63	   is	   a	   moderately	   strong	   positive	   relationship	   between	   height	   and	  
average	   parents	   height	   (suggesting	   that	   both	   variables	   move	   in	   the	   same	  
direction).	  The	  scatterplot,	  especially	  the	  z-‐scores,	  show	  similar	  deviations,	  but	  less	  
variability	  in	  the	  parents’	  average	  height.	  

   

� 

r =
Σzxzy

n −1
=
3.12

5
= 0.63



 

 157 

Problem Solutions: Study Guide for Exam 2 
 
a. Make a scatterplot of both of your variables by entering the letter of each person on the 
proper place on the graph. Draw the best fitting line through the points. 
 

4.0  B   G  
3.75       
3.5 I  C    
3.25       
3.0    E, H   
2.75    J D  
2.5      A 
2.25       
2.0   F    
1.75       
1.5       
1.25       

    0    1     2     3     4     5 
 
 
b. Describe each abbreviation in the table: 
 
X = Mean, average of scores 
 
Where will you use the ∑(X)? In formula for Mean 
 

 = Deviation from mean 
 
What must the ∑  total? 0 
 

= Deviation from mean squared 
 
∑ Sum of Squares (SS), in formula for variance and SD 
 

Sum of Products, in deviation formula for r 
 
 Σzxzy Sum of z Products, in z formula for r  
 
 
 
 
 
 
 
 

† 

(X - X )(Y - Y )
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c. Find the following statistics for Xs and Ys. Show formulas and calculations. 
 
   X    Y 
Mode    3     3.9 
 
Median   3      3.0 
 
Range    0-5    2.1-3.9 
 
M  ∑ X  =  27  =  2.7  ∑ Y = 30.8  = 3.08 
          N      10       N      10 
  
SS    S  = 20.1  S = 4.04 
 
Variance = SS/n-1  20.1/9 = 2.44    4.04/9 = 0.45 
 
SD = √SS/n-1  √2.44 = 1.49   √.45 = 0.67 
 
d. Find the following statistics for Xs and Ys taken together. Show formulas and 
calculations. 
 
Pearson’s r 

 
 
 

 
                                r =    
 
	   � 

=
−3.42

20.1* 4.04
=
−3.42

9.01
= −0.38

� 

Σzxzy
n−1

� 

=
−3.42

9
= −0.38
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	   Practice	  Question	  Solutions:	  Set	  9	  
	  

	  

	   (1)	  	  
A	   Type	   I	   error	   is	   concluding	   that	   there	   is	   an	   effect	   (a	   “difference”)	   when	   there	  
really	  isn’t	  one.	  
A	  Type	  II	  error	  is	  concluding	  that	  there	  is	  not	  an	  effect,	  when	  there	  really	  is	  one.	  
	  
(2)	  	  
Step	  1:	  SAT	  Hypotheses	  

H0:	  μ	  <	  500	  	  (one-‐tailed	  because	  superintendent	  believes	  the	  program	  should	  
increase	  SAT	  scores)	  
HA:	  μ	  >	  500	  

Step	  2:	  Criterion	  for	  decision:	  α	  =	  0.05,	  the	  standard	  level.	  
Step	  3:	  Sample	  statistics	  (given	  in	  the	  question)	  

μ	  =	  500,	  σ	  =	  100,	  n	  =	  25,	  sample	  mean	  =	  559	  
Step	  4:	  Test	  statistic	  

Here	  we	  have	  one	   sample	   and	   know	   the	  population	   standard	  deviation,	   so	  
we	  conduct	  a	  one	  sample	  z-‐test.	  
	  
z	  =	  (X-‐μ)/(σ/√n)	  =	  (559-‐500)/(100/√25)	  =	  2.95	  
	  

Step	  5:	  Compare	  observed	  to	  critical	  test	  value.	  	  	  
With	   α	   =	   0.05	   and	   1-‐tailed	   test,	   the	   critical	   z-‐score	   is	   1.65.	   	   Here	   the	  
computed	   z	   is	   2.95,	  which	   is	   in	   the	   critical	   region	   (beyond	   the	   1.65	   critical	  
score).	  

	  Step	  6:	  Decide	  about	  null	  hypothesis:	  reject	  the	  H0	  	  
Step	  7:	  Conclude	  about	  relationship:	  The	  new	  program	  does	  significantly	  increase	  
SAT	  scores.	  The	  effect	  size	  is	  59/100	  or	  .59,	  which	  is	  considered	  moderate.	  
	  
(3)	  	  
This	  would	  have	  an	  impact	  on	  the	  standard	  error	  (making	  it	  larger).	  	  So	  instead	  of	  
dividing	   by	   √25,	   you	   would	   divide	   by	   √9.	   	   The	   end	   result	   would	   be	   that	   your	  
computed	  z-‐score	  would	  be	  =	  1.77.	  	  This	  score	  is	  still	  within	  the	  critical	  region	  and	  
Dr.	   Standard	   would	   still	   reject	   the	   null	   hypothesis	   and	   come	   to	   the	   same	  
conclusion	  as	   in	  2	  above.	  Note	   that	   the	  effect	  size	  does	  not	  change	  because	   it	   is	  
independent	  of	  sample	  size.	  
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 Practice	  Question	  Solutions:	  Set	  10	  
	  

 

 (1)	  	  
Step	  1:	  Hypotheses	  

H0:	  μ	  =	  5.8	  	  (two-‐tailed	  because	  looking	  to	  see	  if	  sleep	  deprived	  group	  was	  
different)	  
HA:	  μ	  ≠	  5.8	  

Step	  2:	  Criterion	  for	  decision:	  α	  =	  0.05	  
Step	  3:	  Sample	  statistics	  (given	  in	  the	  question)	  

μ	  =	  5.8,	  n	  =	  101,	   =	  4.5,	  s	  =	  1.6	  
Step	  4:	  Test	  statistic	  

Here	  we	  have	  one	  sample	  and	  know	  the	  population	  standard	  deviation,	  so	  
we	  conduct	  a	  one-‐sample	  z-‐test.	  
t	  =	  ( -‐μ)/(s/Ön)	  =	  (4.5-‐5.8)/(1.6/Ö101)	  =	  -‐8.17	  
df	  =	  n	  –	  1	  =	  101	  –	  1	  =	  100	  

Step	  5:	  Compare	  observed	  to	  critical	  test	  value	  	  	  
With	  α	  =	  0.05	  and	  2-‐tailed	  test	  the	  critical	  t-‐score	  is	  ±2.0	  (the	  table	  doesn’t	  
have	  df	  =	  100,	  so	  we’ll	  use	  the	  highest	   level	   in	  the	  table	  that	   isn’t	  greater	  
than	  our	  actual	  df,	  here	  df	  =	  60).	  	  Here	  the	  computed	  t	  is	  -‐8.17,	  which	  is	  in	  
the	  critical	  region.	  

Step	  6:	  Decide	  about	  null	  hypothesis:	  reject	  H0	  	  
Step	   7:	   Conclude	   about	   relationship:	   The	   sleep-‐deprived	   group	   is	   significantly	  
different	   than	   the	   known	   population.	   The	   effect	   size	   is	   1.3/1.6	   =	   .81,	   which	   is	  
large.	  
(2)	  	  
Step	  1:	  Hypotheses	  

H0:	  μ	  =	  14	  	  (two-‐tailed	  because	  looking	  to	  see	  if	  there	  is	  any	  change)	  
HA:	  μ	  ≠	  14	  

Step	  2:	  Criterion	  for	  decision:	  α	  =	  0.05	  
Step	  3:	  Sample	  statistics	  (given	  in	  the	  question)	  

μ	  =	  14,	  n	  =	  5	  
=	  ΣX/n	  =	  12	  

s	  =	  √SS/n-‐1	  =	  1.58	  
Step	  4:	  Test	  statistic	  

Here	   we	   have	   one	   sample	   and	   don’t	   know	   the	   population	   standard	  
deviation,	  so	  we	  conduct	  a	  one-‐sample	  t-‐test.	  
t	  =	  ( -‐	  μ)/(s/√n)	  =	  (12-‐14)/(1.58/√5)	  =	  -‐2.83	  
df	  =	  n	  –	  1	  =	  5	  –	  1	  =	  4	  

Step	  5:	  Compare	  observed	  to	  critical	  test	  value	  	  	  
With	   an	   α	   =	   0.05	   and	   2-‐tailed	   test	   the	   critical	   t-‐score	   is	   ±2.77.	   	   Here	   the	  
computed	  t	  is	  -‐2.83,	  which	  is	  in	  the	  critical	  region.	  

Step	  6:	  Decide	  about	  null	  hypothesis:	  reject	  H0	  
Step	  7:	  Conclude	  about	  relationship:	  The	  average	  age	  at	  which	  drinking	  first	  began	  
is	  significantly	  younger.	  The	  effect	  size	  is	  2/1.58	  =	  1.27,	  which	  is	  very	  large.	  

 

€ 

X 

€ 

X 

€ 

X 

€ 

X 



 

 161 

(3)	  	  
In	  both	   cases,	   the	   critical	   t	   is	   the	   same	   (df	   =	  16-‐1	  =	  15,	   two-‐tailed)	   =	  2.131.	   The	  
difference	  in	  (a)	  and	  (b)	  comes	  from	  the	  different	  estimated	  standard	  error	  (due	  to	  
different	  sample	  standard	  deviations).	  
(a)	  s	  =	  √60/15	  =	  2,	  sX	  =	  2/√16	  =	  .5,	  t	  =	  3/.5	  =	  6	  
tobs	  >	  tcrit	  so	  reject	  H0;	  effect	  size	  =	  3/2	  =	  1.67,	  which	  is	  very	  large	  
(b)	  s	  =	  √600/15	  =	  6.32,	  sx	  =	  6.32/√16	  	  =	  1.58,	  t	  =	  3/1.58	  =	  1.9	  
tobs	  <	  tcrit	  so	  fail	  to	  reject	  H0	  
	  
(c)	  As	  the	  sample	  variability	  increases,	  so	  does	  the	  average	  difference	  expected	  by	  
chance.	  	  As	  a	  result,	   in	  (a)	  the	  difference	  is	  1.67	  SD	  &	  we	  reject	  the	  H0,	  but	  in	  (b)	  
the	  difference	  is	  less	  than	  ½	  SD	  (3/6.32)	  &	  we	  fail	  to	  reject	  the	  H0.	  
	  
(4)	  	  
Step	  1:	  Hypotheses	  

H0:	   μ	   =	   40	   	   (1-‐tailed	   because	   looking	   to	   see	   if	   they	   work	   more	   than	   40	  
hrs/wk)	  
HA:	  μ	  ≠	  40	  

Step	  2:	  Criterion	  for	  decision:	  α	  =	  0.05	  
Step	  3:	  Sample	  statistics	  (given	  in	  the	  question)	  

μ	  =	  40,	  n	  =	  30	  
solve	   =	  47.8	  
solve	  s	  =	  5.93	  

	  
Step	  4:	  Test	  statistic	  

Here	   we	   have	   one	   sample	   and	   don’t	   know	   the	   population	   standard	  
deviation,	  so	  we	  conduct	  a	  one	  sample	  t-‐test.	  
s=	  √1020/29	  =	  	  5.9;	  sx	  =	  5.9/√30	  =	  1.08	  
t	  =	  ( -‐μ)/(sx)	  =	  (47.8-‐40)/(1.08)	  =	  7.24	  
df	  =	  n	  –	  1	  =	  30	  –	  1	  =	  29	  

Step	  5:	  Compare	  observed	  to	  critical	  test	  value	  
With	   α	   =	   0.05	   and	   1-‐tailed	   test,	   the	   critical	   t-‐score	   is	   1.699.	   Here	   the	  
computed	  t	  is	  7.20,	  which	  is	  in	  the	  critical	  region.	  

Step	  6:	  Decide	  about	  null	  hypothesis:	  reject	  H0	  
Step	  7:	  Conclude	  about	  relationship:	  The	  workers	  are	  working	  significantly	  greater	  
than	  40	  hrs	  per	  week.	  The	  effect	  size	  is	  7.8/5.9	  =	  1.3,	  which	  is	  very	  large.	  
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 Practice	  Question	  Solutions:	  Set	  11	  
	  

 

 (1)	  	  
Step	  1:	  State	  the	  Hypotheses	  

H0:	  μD	  =	  0	  	  (two-‐tailed	  because	  looking	  for	  a	  “difference”)	  
HA:	  μD	  ≠	  0	  

Step	  2:	  Criterion	  for	  decision:	  α	  =	  0.01	  
Step	  3:	  Sample	  statistics	  (given	  in	  the	  question)	  

μD	  =	  0,	  nD	  =	  9	  
solve	  for	   =	  4.0	  
solve	  for	  sD	  =	  √7/(9-‐1)	  =	  0.94	  
	  

Step	  4:	  Test	  statistic	  
Here	   we	   have	   one	   sample	   and	   don’t	   know	   the	   population	   standard	  
deviation,	  so	  we	  conduct	  a	  one	  sample	  t-‐test.	  
t	  =	  ( -‐μD)/(sD/Ön)	  =	  (4-‐0)/(0.94/Ö9)	  =	  12.83	  
df	  =	  n	  –	  1	  =	  9	  –	  1	  =	  8	  

Step	  5:	  Compare	  observed	  to	  critical	  test	  value	  	  	  
With	   α	   =	   0.01	   and	   1-‐tailed	   test,	   the	   critical	   t-‐score	   is	   ±3.355.	   	   Here	   the	  
computed	  t	  is	  12.83,	  which	  is	  in	  the	  critical	  region.	  

Step	  6:	  Decide	  about	  null	  hypothesis:	  reject	  H0	  
Step	  7:	  Conclude	  about	  relationship:	  groups	  do	  differ.	  The	  effect	  size	  is	  4/.94	  =	  	  4.2,	  
which	  is	  very	  large.	  
	  
(2)	  	  
A	   B	   D	  =	  (B-‐A)	   	   	  
	  10	   11	   	  	  1	   	  	  -‐7	   	  	  49	  
	  	  -‐8	   	  	  3	   11	   	  	  	  3	   	  	  	  	  9	  
-‐11	   11	   22	   	  14	   196	  
	  15	   10	   	  -‐5	   -‐13	   169	  
	  	  	  0	   	  	  8	   	  	  8	   	  	  	  0	   	  	  	  	  0	  
	  	  -‐4	   	  	  7	   11	   	  	  	  3	   	  	  	  	  9	  
	   	   	  =	  8	   	   SSD	  =	  432	  

	  
Step	  1:	  Hypotheses	  

H0:	  μD	  =	  0	  	  (2-‐tailed	  because	  looking	  for	  a	  “difference”)	  
HA:	  μD	  ≠	  0	  

Step	  2:	  Criterion	  for	  decision:	  α	  =	  0.05	  
	  
	  
	  
(continues	  on	  next	  page)	  
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Step	  3:	  Sample	  statistics	  (given	  in	  the	  question)	  
μD	  =	  0,	  nD	  =	  6	  

=	  8.0	  
sD	  =	  √432/(6-‐1)	  =	  9.3	  

Step	  4:	  Test	  statistic	  
Here	  we	  have	  two	  samples,	  but	  they	  are	  paired,	  so	  we	  conduct	  a	  related-‐
samples	  t-‐test.	  
t	  =	  ( -‐μD)/(sD/Ön)	  =	  (8.0)/(9.3/Ö6)	  =	  2.18	  
df	  =	  n	  –	  1	  =	  6	  –	  1	  =	  5	  

Step	  5:	  Compare	  observed	  to	  critical	  test	  value	  	  	  
With	   α	   =	   0.05	   and	   2-‐tailed	   test,	   the	   critical	   t-‐score	   is	   ±2.571.	   	   Here	   the	  
computed	  t	  is	  2.18,	  which	  is	  not	  in	  the	  critical	  region.	  

Step	  6:	  Decide	  about	  null	  hypothesis:	  fail	  to	  reject	  H0	  
Step	  7:	  Conclude	  about	  relationship:	  Twins	  do	  not	  differ	  in	  handedness.	  Note	  that	  
difference	  is	  almost	  1	  SD	  (8/9.3),	  which	  is	  a	  large	  effect	  size.	  This	  suggests	  that	  the	  
experiment	  is	  worth	  redoing	  with	  a	  larger	  sample	  to	  provide	  more	  power.	  

	  
	  (3)	  	  
tset1	  =	  4/(10/√9)	  =	  1.2,	  effect	  size	  =	  4/10	  =	  .4,	  medium	  
tset2	  =	  4/(2/√9)	  =	  6,	  effect	  size	  =	  4/2	  =2,	  very	  large	  
Set	   2	   has	   the	   smaller	   standard	   deviation	   (and	   thus	   standard	   error)	   and	   thus	   a	  
larger	  t,	  which	  is	  more	  likely	  to	  allow	  rejecting	  the	  H0.	  
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Practice	  Question	  Solutions:	  Set	  12	  
	  
(1a)	  	   s2	  =	  SS/n-‐1	  

A:	  s2	  =	  84/3	  =	  28	  
B:	  s2	  =	  108/3	  =	  36	   	  
Pooled:	  s2	  =	  (84+108)/(3+3)	  =	  192/6	  =	  32	  
1/2-‐way	  between	  the	  sample	  variances	  because	  sample	  ns	  are	  equal	  
	  

(1b)	   H0:	   =	  0	  
	   HA:	   	  ¹	  0	  
	   tcritical	  (2-‐tailed,	  a	  =	  .05,	  df	  =	  6)	  =	  2.447	  
	   sx-‐x	  =	  Ös2pool/4	  +	  s2pool/4	  =	  Ö32/4	  +	  32/4	  =	  Ö16	  =	  4	  
	   tobserved	  =	  (58-‐52)/4	  =	  6/4	  =	  1.5	  
	   observed	  <	   critical,	   so	   fail	   to	   reject	  null	  hypothesis	  and	  conclude	  no	  difference	  

between	  groups	  
	  
(2)	   s2pool	  =	  (SSA	  +	  SSB	  )/(dfA	  +	  dfB)	  =	  (500+670)/(5+8)	  =	  1170/13	  =	  90	  
	   sx-‐x	  =	  Ö90/6	  +	  90/9=	  Ö15	  +	  10	  =	  Ö25	  =	  5	  
	   tobserved	  =	  15/5	  =	  3	  
	   tcritical	  (2-‐tailed,	  a	  =	  .05,	  df	  =	  13)	  =	  2.16	  

observed	  >	  critical,	  so	  reject	  null	  hypothesis	  and	  conclude	  a	  difference	  between	  
groups.	  Using	  sp,	  the	  effect	  size	  is	  15/√90	  =	  15/9.5	  	  =	  1.58,	  which	  is	  very	  large.	  
	  

(continues	  on	  next	  page)	  
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	  (3)	   Workspace	   	  
	   	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	   	  
	  
	  
	  
	  

s2pool	  =	  (SSA	  +	  SSB	  )/(dfA	  +	  dfB)	  =	  (768.6+992.1)/(9+9)	  =	  1760.7/18	  =	  97	  
sx-‐y	  =	  Ö97.82/10	  +	  97.82/10	  =	  Ö19.56	  =	  4.42	  

	   tobserved	  =	  (59.4-‐53.3)/4.42	  =	  6.1/4.42	  =	  1.38	  
	   tcritical	  (2-‐tailed,	  a	  =	  .05,	  df	  =	  18)	  =	  2.101	  (2-‐tailed	  because	  not	  only	  one	  direction	  

hypothesized)	  
observed	  <	   critical,	   so	   fail	   to	   reject	  null	  hypothesis	  and	  conclude	  no	  difference	  
between	  groups	  

	   XA XB 	   	   	   	  

	   55	   48	   -‐4.4	   19.36	   -‐5.3	   28.09	  
	   72	   77	   12.6	   158.76	   23.7	   561.69	  
	   61	   46	   	  1.6	   2.56	   -‐7.3	   53.29	  
	   43	   51	   -‐16.4	   268.96	   -‐2.3	   5.29	  
	   59	   60	   -‐0.4	   .16	   	  6.7	   44.89	  
	   70	   44	   10.6	   112.36	   -‐9.3	   86.49	  
	   67	   53	   	  7.6	   57.76	   -‐0.3	   0.09	  
	   49	   61	   -‐10.4	   108.16	   	  7.7	   59.29	  
	   55	   52	   -‐4.4	   19.36	   -‐1.3	   1.69	  
	   63	   41	   	  4.6	   21.16	   -‐12.3	   151.29	  
Sum	   594	   533	   	  	  0	   768.6	  =	  SSA	   	  	  	  0	  	   992.1	  =	  SSB	  
Mean	   59.4	   53.3	   	   	   	   	  
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Problem Solutions: Study Guide for Exam 3 
 
Worksheet: Finding critical values in distributions 
 
z, 1-tailed, a = 0.05; z = 1.64   z, 2-tailed, a = 0.05; z = 1.96 
z, 1-tailed, a = 0.01; z = 2.32   z, 2-tailed, a = 0.01; z = 2.59 
t, 1-tailed, a = 0.05, df =29; t = 1.699 t, 2-tailed, a = 0.05, df =29; t = 2.045 
t, 1-tailed, a = 0.01, df =29; t = 2.462 t, 2-tailed, a = 0.01, df =29; t = 2.756 
 
Worksheet: z-test 
 
1 & 2) Hypotheses and criterion for decision 
 
Ho:  ≤ 21 
 
Ha:  > 21 
 
Critical region: a. a = 0.05 

b.1-tailed (upper)       z-critical = 1.65 
 

3) Sample statistics 
 
Standard error  
 
 = 3/√25 = 3/5 = 0.6 
 
4) Test statistic 
 
z-observed   

 
 

 
 =(23 - 21) / 0.6 = 3.33 
 
5) Compare observed to critical test value: zcrit = 1.65  
 
z-observed >z-critical, that is, it is in the critical region 
 
6) Decide about null hypothesis: reject null hypothesis 
 
7) Conclude about relationship: The class has above average ACT scores. Effect size = 
2/3 = .67, which is large. 
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Worksheet: One-Sample t-test 
 
Example: The quiz average for a class is 7.5.  The teacher predicts that if classical music 
is playing in the background the quiz scores will increase.  She tries this out with 5 
students and they score 7, 8, 8, 9, and 9. Using alpha set at 0.05 see if the teacher’s 
hypothesis is supported. 
 
1 & 2) Hypotheses and criterion for decision 
 
Ho:  ≤ 7.5, Mean with music less than or equal to pop. mean. 
 
Ha:  > 7.5, Mean with music greater than population mean. 
 
Critical region: a. a = 0.05 

b.1-tailed (upper    t-critical = 2.132 
 

3) Sample statistics 
 

  
 
 
 
 
 
 
 
 

 
Mean    S X/N = 41/5 = 8.2 

 
Sum of Squares  2.8 
 

Standard deviation  = √2.8/4 = √0.7 = 0.8366 

 

Standard error  0.8366/√5 = 0.8366/2.236 = 0.374 

 
df = 5-1 = 4 
 
4) Test statistic 
  

One-sample t-observed  (8.2 – 7.5)/0.37 = 1.89 

� 

X 
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X 

X =

SS = X − X( )∑
2

=

s =
SS

n −1

s
X
=

s

n
=

t =
X − µ

s
X

=

Student Score   

A 7 -1.2 1.44 
B 8 -0.2 0.04 
C 8 -0.2 0.04 
D 9  0.8 0.64 
E 9  0.8 0.64 
Σ 41  0 2.8 

 8.2   

� 

X − X 

€ 

(X − X )
2



 

 168 

5) Compare observed to critical test value: tcrit = 2.132  
 
t-observed < t-critical, that is, it is not in the critical region 
 
6) Decide about null hypothesis: fail to reject null hypothesis 
 
7) Conclude about relationship: Evidence not support positive effect of classical music 
on quiz scores. 
Worksheet: Paired-Samples t-test 
 
Example: Here are data comparing college student's motivation scores before and after 
Thanksgiving break to see if there is an effect of a week off school.  
 
 
 
 
 
 
 
 
 
 
 
 
Note: the order of subtraction (A-B) will produce positive scores if studying increased 
after break. 
  
1 & 2) Hypotheses and criterion for decision 
 
Ho: µD= 0, There is no difference between the two periods. 
 
Ha: µD  ≠ 0 or There is a difference between the two periods. 
 
Critical region: a. a =  0.05 
   b. 2-tailed   t-critical = 2.776 
 
3) Sample statistics 
 

Mean of differences  = 11/4 = 2.2  

Sum of Squares  =  34.76 
 
 
Standard deviation 

D =
D∑
n

SS
D
= D − D( )∑

2

Student Before After D(A-B)   

A 65 70  5   2.8  7.84 
B 68 69  1 -1.2  1.44 
C 50 55  5  2.8  7.84 
D 75 73 -2 -4.2 17.64 
E 80 82  2 -0.2  0.04 
Σ   11  0 ∑SSD

2 =34.76 
     2.2   
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      = √34.76/4 = √8.69 = 2.95 

 

Standard error  = 2.95/√5 = 1.32 

 
df = 5-1 = 4 
 
4) Test statistic:  Remember that the mean (µD) we are testing our hypothesis against is 
zero (0) because H0 predicts no difference. 
 

Related-Samples observed-t      = 2.2 – 0/1.32 = 1.67 

5) Compare observed to critical test value: tcrit = 2.776 
  
t-observed < t-critical, that is, it is not in the critical region 
 
6) Decide about null hypothesis: fail to reject null hypothesis 
 
7) Conclude about relationship: Evidence not support any difference between 
motivation scores during two periods. 

 
 Worksheet: Independent-Samples t-test 
 
Example: Here is data illustrating the motivation scores of students in a required course 
compared to scores of a different group of students in an elective course at the same 
level. Let’s test the hypothesis that students in elective courses are more motivated than 
those in required courses. Assume alpha = 0.05 

 
 
 
 
 
 
 
 
 
 
 
 
1) Hypotheses and criterion for decision 
 
Ho: X2 - X1 ≤ 0, The motivational difference between elective and 
 required courses is less than or equal to zero. 
 

s
D
=

s
D

n
D

t
D
=
D − µ

D

s
D

X1 (Req) X1-M (X1-M)2 X2 (Elec) X2-M (X2-M)2 

5  1 1 2 -0.4 0.16 
3 -1 1 4  1.6 2.56 
4  0 0 1 -1.4 1.96 
5  1 1 3  0.6 0.36 
3 -1 1 2 -0.4 0.16 

∑X1 = 20    0 SSX1 = 4 ∑X2 =  12    0 SSX2 = 5.2 
= 4   = 2.4   
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X 1
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Ha: X2 - X1 > 0, The motivational difference between elective 
 and required courses is greater than zero. 
 
NOTE: SINCE ELECTIVE SCORES ARE LOWER, THE 
NULL HYPOTHESIS IS NOT GOING TO BE REJECTED! 
 
Critical area: a. a =  0.05  
  b. 1-tailed (upper)    

 
 
  critical value 2.132 

 
 
3) Sample statistics  
 

X1         X2 
 

Mean   = 20/5 = 4   = 12/5 = 2.4  

 
Sum of Squares  = 4   = 5.2 
  
  
Degrees of freedom df = n – 1 = 4     = 4 
 

Pooled variance  = (4 + 5.2)/4+4 = 9.2/8 = 1.15 

 

Standard error  = √1.15/5 + 1.15/5 = √2.3/5 = √0.46 = 0.678  

(When adding fractions, do not add the denominators!) 
 
 
 
 
4) Test statistic 

(Remember that the difference between means (µ1 & µ2) in Ho is zero (0).  
 

 
Independent-Samples observed t  

= ((2.4 – 4) – 0))/0.678 = -1.6/0.678 = -2.35 
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5) Compare observed to critical test value: tcrit = 2.132 
 
t-observed is not in the critical upper region (it’s all the way at the other end). 
 
6) Decide about null hypothesis: cannot be rejected.  
 
7) Conclude about relationship: The evidence does not support that motivational 
scores are higher in elective courses. 
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Practice	  Question	  Solutions:	  Set	  13	  
	  
(1a)	  	   b	  =	  SP/SSx	  =	  30/15	  =	  2	  

a	  =	   	  –	  b 	  =	  5	  -‐	  2*4	  =	  -‐3	  
	  =	  bX	  +	  a	  =	  2X	  –	  3	  

	  
(1b)	   	  	  X	   	  =	  2X	  -‐3	  

	  	  3	   	  	  3	  
	  -‐2	   	  -‐7	  
	  	  5	   	  	  7	  
	  	  6	   	  	  9	  

	  
(2)	   	  
	   	  
	  
	  
	  
	  
	  
	  
	   b	  =	  2/2	  =	  1	  
	   a	  =	  9	  –	  1*1	  =	  8	  

	   	  =	  X	  +	  8	  
	  
(3)	   Workspace	  as	  above	  plus	  for	  Y-‐hat,	  predictive	  error,	  and	  squared	  error	   	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	   	  

	  
b	  =	  30/10	  =	  3	  
a	  =	  7	  –	  3*5	  =	  -‐8	  

	   	  =	  3X	  -‐	  8	  	  (Insert	  X	  values	  to	  get	   values.)	  
sest	  =	  Ö	  SSerror/df	  =	  Ö36/3	  =	  Ö12	  =	  3.46	  
	  

(4)	   c	   	  When	  a	   correlation	   is	   close	   to	  ±1.0,	   then	   the	   standard	  error	   of	   the	  estimate	  
(SEE)	  will	  be	  small.	  When	  the	  correlation	  is	  close	  to	  0,	  then	  SEE	  will	  be	  large.	  
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ˆ Y 
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ˆ Y 

€ 

ˆ Y 
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ˆ Y 

	   X	   Y	   X-‐ 	   Y-‐ 	   CrossProd	   (X-‐ )2	  

	   0	   	  9	   -‐1	   	  0	   0	   1	  
	   1	   	  7	   	  0	   -‐2	   0	   0	  
	   2	   11	   	  1	   	  2	   2	   1	  
Sum	   3	   27	   	  0	   	  0	   2	  =	  SP	   2	  =	  SSx	  
Mean	   1	   	  9	   	   	   	   	  

	   X	   Y	   X-‐ 	   Y-‐ 	   CP	   (X-‐ )2	   	   	  Y-‐ 	   (Y-‐	   )2	  

	   4	   	  	  1	   	  	  -‐1	   	  -‐6	   	  	  6	   	  	  	  1	   	  	  4	   	  	  -‐3	   	  	  9	  
	   7	   16	   	  	  	  2	   	  	  9	   18	   	  	  	  4	   13	   	  	  	  3	   	  	  9	  
	   3	   	  	  4	   	  	  -‐2	   	  -‐3	   	  	  6	   	  	  	  4	   	  	  1	   	  	  	  3	   	  	  9	  
	   5	   	  	  7	   	  	  	  0	   	  	  0	   	  	  0	   	  	  	  0	   	  	  7	   	  	  	  0	   	  	  0	  
	   6	   	  	  7	   	  	  	  1	   	  	  0	   	  	  0	   	  	  	  1	   10	   	  	  -‐3	   	  	  9	  
Sum	   25	   35	   	  	  	  0	   	  	  0	   30	   	  10	   	   	  	  	  0	   36	   =	  

SSerror	  
Mean	   5	   7	   	   	   	   	   	   	   	  
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Practice	  Question	  Solutions:	  Set	  14	  
	  
(1)	   	  
	   	  
	  
	  
	  
	  
Ho:	  Pets	  &	  allergies	  are	  independent;	  Ha:	  Pets	  &	  allergies	  are	  not	  independent.	  
c2crit	  (df	  =	  2,	  a	  =	  .05)	  =	  5.99	  
c2obs	  =	  (fo-‐	  fe)2/fe	  =	  7.52/17.5	  +	  7.52/7.5	  +	  .52/24.5	  +	  .52/10.5	  +	  72/28	  +	  72/12	  =	  16.58	  
Observed	  	  >	  critical	  value,	  so	  reject	  null	  hypothesis;	  support	  previous	  findings	  that	  more	  
pets	  related	  to	  fewer	  allergies	  
	  
(2)	   	   	  
	  
	  
	  
	  
	  
	  
Ho:	  Gender	  &	  voting	  are	  independent;	  Ha:	  gender	  &	  voting	  are	  not	  independent.	  
c2crit	  (df	  =	  1,	  a	  =	  .01)	  =	  6.64	  
c2obs	  =	  (fo-‐	  fe)2/fe	  =	  22/8	  +	  22/7	  +	  22/8	  +	  22/7	  =	  2.14	  
Observed	  	  <	  critical	  value,	  so	  fail	  to	  reject	  null	  hypothesis;	  evidence	  does	  not	  support	  a	  
relationship	  between	  gender	  and	  voting	  

	   Obs	   Exp	   Obs	   Exp	   Obs	   Exp	   Marg	  
	   10	   17.5	   25	   24.5	   35	   28	   70	  
	   15	   7.5	   10	   10.5	   5	   12	   30	  
Marg	   25	   	   35	   	   40	   	   100	  

	   Obs	   Exp	   Obs	   Exp	   Marg	  
	   Bush	   Kerry	   	  
Male	   10	   8	   5	   7	   15	  
Female	   6	   8	   9	   7	   15	  
Marg	   16	   	   14	   	   30	  
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Practice	  Question	  Solutions:	  Set	  15	  
	  
(1)	   Population standard deviation is unknown, so use t-test 

 , find value in t table for ½(1.00-CI), which is % in each tail (.05 
1-tailed in a & .10 1-tailed in b) 
  
(a) 90% CI: 200 ± 1.711 (20/√25) = 200 ± 6.8 = 193.2 to 206.8 
 
(b) 80% CI: 200 ± 1.318 (20√25) = 200 ± 5.3 = 194.7 to 205.3 
 
(c) As confidence level increases, so does the critical test value, and so the 
confidence interval becomes wider (confidence-accuracy trade-off). 
 

(2) (a) 95% CI: 200 ± 1.98 (20/√64) = 200 ± 4.95 = 194.05 to 204.95 
 Use higher df, 120 
  

(c)  95% CI: 200 ± 2.021 (20/√36) = 200 ± 6.74 = 193.26 to 206.74 
Use higher df, 40 

  
(c) You get a better estimate (narrower interval, less error) with a larger sample 
size. 

	  
(3)	   , find value in t table for ½(1.00-CI) 

  
(a) point estimate = 5 

 
 (b) tcrit (2-tailed, .025, df = 23) = 2.069 

s2
pooled= (2030+1420)/(14+9) = 150 

SE = √150/15 + 150/10 = √25 = 5 
95% CI: -12 ± 2.069 (5) = -12 ± 10.345 = -22.3 to -1.7 

 
(d)  Since the population mean (µ = 0) for the null hypothesis falls outside 95% 

CI, he can reject the null hypothesis and conclude there is a difference 
between the groups. 
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Problem Solutions: Study Guide for Exam 4 and Final Exam 
 
Worksheet: Finding critical values in distribution tables 
 
r, 1-tailed, a = 0.05, df =28; r = .306  r, 2-tailed, a = 0.05, df =28; r = .361 
r, 1-tailed, a = 0.01, df =28; r = .423  r, 2-tailed, a = 0.01, df =28; r = .463 
c2, a = 0.05, df = 2; c2 = 5.99   c2, a = 0.01, df = 2; c2 = 9.21 
 
Sample problems 
 
1. H0:  ³ µ; HA:  < µ; zcrit (1-tail, .05) = -1.64; (relevant formulas below)  

 
For 30 students: SE = 100/Ö30 = 18.25; z = (480-500)/18.25 = -1.096. Since the observed 
z is less extreme than the critical z, fail to reject null hypothesis and conclude that 
evidence does not support the class being below the population average on the SAT. 
 
For 100 students: SE =100/Ö100 = 10; z = (480-500)/10 = -2. Since this observed z is 
more extreme than the critical z, reject the null hypothesis and conclude that the classes 
are below the population average on the SAT. The effect size is 20/100, which is .2, 
which is small.  

   = 20 ± 1.96 (10) = 20 ± 19.6 = .4 to 39.6 
Remember that 95% CI means 5% error total, so zcrit is for .025, 1-tailed. The null 
hypothesis mean of 0 is just outside the CI. A 2-tailed hypothesis test with zobs  = -2 
would just barely exceed  zcrit = 1.96. 
 
Extra credit: The denominator gets smaller with 100 students, and so the z-value gets 
larger. Since a 20-point difference is small, given that 1 SD = 100, it will only be 
significant with a large n. For n = 20, the standard error is 18.25, almost as big the 
difference found. For n = 100, SE has been reduced to 10, so the difference is now twice 
as large. 
 
2. H0:  ³ µ; HA:  < µ; tcrit (1-tail, .05, 29df ) = -1.699. 

 5/Ö30 = 0.91      98-100/0.91 = -2.198   

Since the observed t is more extreme than the critical t, reject the null hypothesis and 
conclude that the class is below the population average on this test.  The effect size is 
moderate. 

 = 2 ± 2.045(.91) = 2 ± 1.86 = .14 to 3.86 
Remember that 95% CI means 5% error, so tcrit is for .025, 1-tailed. The null hypothesis 
mean of 0 is again just outside the CI. A 2-tailed hypothesis test with tobs  = -2.198 would 
just barely exceed  tcrit = 2.045. 
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Extra credit: As the effect size shows, the 2 points is 40% of its SD, while the 20 points 
about is only 20% of its SD. 
 
3. H0:  £ 0; HA:  > 0; t  crit (1-tail, .05, 29df ) = 1.699 

 = 1/Ö30 = 0.1825;    = 2-0/0.1825 = 10.95   2/1 = 1 

Since the observed t is more extreme than the critical t, reject the null hypothesis and 
conclude that the class is studying more after the midterm.  The effect size is very large. 
 
95% CI  = 2 ± 2.045(.1825) = 2 ±  .37 = 1.63 to 2.37 

of Ho (0) does not fall within confidence interval (which will always the case when 
the same α is used for both tests and Ho is rejected); instead  is the mean of the second 
population predicted by HA. 
 
Extra credit: As in the problems above, the critical t is not the same for a 1-tailed .05 
hypothesis test and a 95% CI mean estimate, which has a total of 5% error or .025, 1-tail. 
The critical t for a 1-tailed .05 hypothesis test is the same as that for 90% CI, which has a 
total of 10% error or .05 in each tail.   
 
4. H0: 1 - 2 = 0; HA: 1 - 2 ≠ 0; tcrit (2-tailed, .05, 28df) = ± 2.048. 
 

= Ö170/14 = 3.48        = Ö200/14 = 3.78 

 

=(170+200)/(14+14)=13.21  =Ö(13.21+13.21)/15=1.33 

  = ((80-78) – 0)/1.33 = 1.5 

 
Since the observed t is less extreme than the critical t, fail to reject the null hypothesis 
and conclude that the class the evidence does not support a difference between sections 
on the exam.  
 
Extra credit: The 2-point mean difference for a mathematics test was with s = 5, while 
here it is with pooled s = 3.63. The effect size is larger here. However, this is a less 
powerful design. The pooled SE is much larger (1.33 vs. .91), thereby reducing the size 
of the observed t (1.5 vs. 2.198), and the 2-tailed hypothesis test increases the critical test 
value (2.048 vs. 1.699).  
 
5. Ho: r £ 0; Ha: r > 0; rcrit (1-tail, .05, 28df ) = 0.306. 

 = 25/Ö(30*185) = 25/74.5 = 0.336 
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Since the observed r is more extreme than the critical r, reject the null hypothesis and 
conclude that studying is positively related to exam scores. The amount of variance is r2, 
which is 11%. 
 

 = 25/30 = 0.833     = 79 - .833(5) = 74.835  

 
 = (X)(slope) + (intercept) = bX + a = .833X + 74.835 

 

 = Ö270/28 = 3.11 

 
If X = 0,  = .833(0) + 74.835 = 74.835 
If X = 3,  = .833(3) + 74.835 = 77.334  
If X = 5,  = .833(5) + 74.835 = 79 (mean of X predicts mean of Y; variant of formula 
for intercept) 
If X = 10,  = .833(10) + 74.835 = 83.165 
 
Extra credit: This is because of regression to the mean. While the X mean always predicts 
the Y mean, other X scores predict Y scores closer to the Y mean, and the discrepancy 
gets larger as X scores get farther from the mean 
 
6. H0: Grades are independent of graduating as a psych major; 
HA: Grades are not independent of graduating as a psych major; 
c2 crit (.05, 4df) = 9.49. 
 
Psych  
Graduate 

Grades Marginal 
A B C D F/W  

Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp  
Yes 20 10.42 30 22.92 20  25  5 12.5  0 4.17   75 
No  5 14.58 25 32.08 40  35 25 17.5 10 5.83 105 
Marginal 25  55  60  30  10  180 
 
Expected: YesA: 75*25/180; YesB: 75*55/180; YesC: 75*60/180; YesD: 75*30/180; 
YesF: 75*10/180; NoA: 105*25/180; NoB: 105*55/180; NoC: 105*60/180; NoD: 
105*30/180; NoF: 105*10/180 
 

 = 8.81+2.19+1+4.5+4.17+6.29+1.56+0.71+3.21+2.98=35.42 

 
Since this observed c2 is more extreme than the critical c2, reject the null hypothesis and 
conclude that grades in statistics are related to graduating with a psychology major. 
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VII. Summary of Formulas 
 
Univariate Statistics   For a population  For a sample 
 

Mean        
 

 
Sum of squares      
 

Variance     
  

 

 

 Standard deviation     
 

 

z –score       
 

 
 
Bivariate Statistics 
 
Sum of the products    
 

Pearson’s correlation coefficient    

 
Degrees of freedom   df = n-2 
 
Regression line   = (X)(slope) + (intercept) = Xb + a = bX + a 
  

Slope     

 
Intercept    
 
Total squared error   
 
Standard error of estimate 
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Hypothesis Testing and Parameter Estimation 
 
z-test 
 
Standard error (s known) 
 

 z-observed 
 
 

 
 
 
Effect size       
 
Parameter estimate (s known)   
 
One-Sample t-test 
 
Degrees of freedom       n - 1 
 
Standard error (s unknown)  
  
 
One-sample t-observed   

 
 
 

 
 
 
Effect size     
 
Parameter estimate (s unknown)   
 
Related-Samples t-test 
 
Degrees of freedom       nD – 1 
 

Mean of differences    

 
Sum of squares of differences   
 
Standard deviation of differences 
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Standard error of differences   

 

Related-Samples observed-t   

 
 
Effect size    
 
Parameter estimate (related samples)  
 
Independent-Samples t-test 
 
Degrees of freedom     df1 = (n1 – 1), df2 = (n2 – 1) 
      dftotal = df1 + df2 = n1 + n2 -2 
 

Pooled variance of independent samples        

(2nd averaging formulas if n1  = n2) 

Standard error of independent samples    

(2nd formula if n1 = n2) 

Independent-Samples observed t  = 

 
 
 
Effect size      
 
Parameter (independent samples)    

 
Chi-Square test 
 

Estimated cell frequencies 
   or   

 

 

Observed chi-square   

 
Degrees of freedom   df = (#columns – 1)*(#rows – 1) 
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