The Origin of Speech

Man is the only animal that can communicate by means of abstract symbols. Yet this ability shares many features with communication in other animals, and has arisen from these more primitive systems \therefore.

by Charles F. Hockett . .

About 50 years ago the Linguistic Society of Paris established a standing rule barring from ifs sessions papers on the origin of language. This action was a symptom of the times. Speculation about the origin of language had been common throughout the 19th century, but had reached nd conclusive results. The whole enterprise in consequence had come'to be frowned upon* as futile or crackpot-in respectable linguistic and philological circles. Yet amidst the speculations there were two well-reasoned empirical plans that deserve mention even though their results were negative.

A century ago there were still many corners of the 'world' that had not been visited by European travelers. It was reasonable for the, European scholar to suspect that beyond the farthest frontiers there might lurk half-men or man'apes who would be "living fossils" attesting to 'earlier stages of human evolution. The speech (or quasi-speech) of these men (or quatsi-men) might then similarly attest to earlier stages in the evolution of language. The search was vain. Nowhere in the world has there been discovered a language that can validly and meaningfully be called "primitive." Edward Sapir wrote in 1921: "There is no more striking genera] fact about language than its universality. One may argue as to whether a particular tribe engages in activities that are worthy of the name of religion or of art, but we know of no people that is not possessed of a fully -developed language. The lowliest South African Bushman speaks in the forms of an rich symbolic system that is in essence perfectly comparable to the speech of the cultivated Frenchman."

The other empirical hope in the 19th century rest\&l on the comparative meth-
od of historical linguistics, tlie discovery of which was one of the triumphs of the' period. Between two 莫解guages the resemblances are sometimes so extensive and orderly that they cannot be attributed to chance or to parallel development. The alternative explanation is that the two are divergent descendants of a single earlier language. English, Dutch, German and the Scandinavian languages are related in just this way. The comparative method makes it nossible to examine such a group of related languages 1 and to construct, often in surprising detail, a portrayal of the common ancestor, in this case the proto-Germanic , لanguage. Direct dọcumentary evidence of proto-Germanic does not exist, yet understanding of its workings exceeds that of niany languages spoken today.

There was at. first some hope that the comparative method might help' determine the origin of language. This 'hope was rational in * a day when it was thought that language might be only a few thousands or tens of thousands of years old, and when it was repeatedly being demonstrated that languages that had been thought to be unrelated were in fact related. By applying, the comparative method to all the languages of the world, some earliest reconstructable horizon would be reached. This might' not date back so early as the origin of language, but it might bear certain earmarks of primitiveness, and thus it would enable investigators to extrapolate toward the origin: This hope also proved vain. The earliest reconstructable stage for any language family shows all the complexities and flexibilities of the languages of today.

These points had become clear a halfcentury ago, by the time of the Paris ruling. Scholars cannot really approve of
such a prohibition. But in this instance it had the useful result, of channeling the energies of investigators toward. the gathertingo rfore and better information about languages as thky are today. The subsequent progress in understanding the workings of language has been truly remarkable. Various related fields have also made 'vast strides in the last halfceentary: zoologists know more 'about the evolutionary ' process; anthropologists know more about the nature of culture, and so on. In the light of these developments there need be no apology for re opening the issue of the origins, of' hu- + man speech.
, Although' the comparative method of linguistics, as has been shown, throws nu light on the 'origin of language, the investigabon may be furthered by a comparative method modeled on that of the zoologist. The frame of reference must be such that. all languages look alike when viewed through it, but such that within it human language as a whole can be compared with the communicative systems of other animals, especially the other hominoids, man's closest living relatives, the - gibbons, and great apes. The useful items for this sort of comparison cannot be things such. as the wiord fur "sky"; languages, have such words, but gibbon calls do not. involve words $\frac{1}{a}$-all. Nor can they be even the signal for "danger," which gibbons do have. Rather, they must be the basic features of design that can be present or absent in an̉y communicative system, wh\&her it be in commmicative system of humans, of animals or of machines.

With this sort of comparative method it may be possible to reconstruct the communicative habits of the remote atcestors of the homiuoid line, which may be called the protohominoids. The tusk, then, is to work out the sequence by
which that ancestrall system became Ianguage as the honhinids-the man-apes and ancient men-bécame man.

Aset of 13 design-features is presented in the illustration on the opposite page. There is solid empirical justification for the belief that all the "langunges of the world share every one of then. At first sight some appear so trivial that, no one looking just at language would bother to note them. They become worthy of mention only when it is realized that certain animal systems-and certain human systems other than lan-guage-lack them.

The first design-feature-the "vocalauditory chamel"-is perkc.ps the most obvious. There are systems of communication that use other channels; for example, gesture, the duncing of bees or the courtship ritual of the stickleback. The vocal-auditory channel has the advantage ${ }^{-}$at least for primates-that it leaves much of the body free for other activityes that can be carried of at the same time.

The next two design-features-"rapid fading" and "broadcast transmission and dirce tional reception," stemming from the physics of sound-are almost unavoidable consequences of the frst. A linguistic signal aqn be heard by any auditory system wfthin earshot, and the source can normaly be localized by binaural direction-hmeling. The rapid fading of such a signal means that it does not linger fyt reception at the hearer's convenience. Animad tracks and spoors, on the other hand, persist for a while; so of equsingin witlen records, a product of man's extremely recent cultural evolution.

The signifieance of "interchangeability" and "total feedback" for language lecomes. clear upon comparison with other systems. In general a speaker of a language cam reproduce any linguistic message he can understand, whereas the chamateristic courtship motions of the mate and female stickleback are differcit. and neither can act out those appropriate to the other. For that matter in the commonication of a human mother and infant nejther is apt to transmit the characteristic signals or to manifest the typical responses of the other. Again, the speaker of a language hears, by total feedbuck, everything of linguistic relevance in what he himself says. In contrast, the male stickleback does not see the colors of his own eye and belly that are. cruqial, in stimulating the femake. Feedback is important, since it makes possible the so-called intermalization' of comm, nicative behavior that
constitutes at least a májor portion of "thinking."

The sixth design-feature, "specializa" tion," refers to the fact that the bodily effort and spreading sound waves of speech serve no function except as signals. A' dog, panting with his tongue hanging out, is performing a biologically essential activity, since this is how dogs cool themselves, off and maintain the proper body temperature. The panting dog incidentally produces sound, and thereby may inform other dogs (or humans) as to where he 'is and how .he feels. But this transmission of informà. tion is strictly a side effect. Nor does the dog's panting exhibit the design-feature of "setmanticity." It" is not a signal meaning that the dog is hot; it is part of being .hot. Iii, language, . however, a message triggers the particular result it does because there ark. relatively fixed associations between . elements . iii , iessages (e.g., words) arid; recurrent fedtures or situations of the world around us. For example, the English wound "salt" means salt, nbt sugar or, pepper. The calls of gibbons also possess semanticity. The gibbon has a tra nger call, for example, and it does not in principle matter that the mesung of, the call' is a' great deal broader and more vague than, say, the cry of "Fire!"

In a semantic communicative system the ties between meaningful message.elements and their meanings can be arbitrary or nonarbitrary. In language the ties are arbitrary. The word. "salt" is not salty nor granular; "dog" is not "oanine"; "whale" is a small word for a large object;. "microorganism" is thk reverse. A picture, on the other hand, looks like what it is a picture of. A bee dapces faster if the source of nectar she is reporting is closer, and slower if 'it is farther away. The design-feature of "arbitrariness" has the disadrantage of being arbitrary; but the great advantage that there is no limit to what can be communicated about

Human vocal organs' can produce a huge variety of sound. But in any one language only a relatively small set of . ranges of sound is used, and the- differences between these ranges are functionally absolute. The English words "pin" and "bin" are different to the ear only at' one point if a speaker produces a syllable that deviates from the normal pronunciation of "pin", in the direction of that of "bin," he is not producing still a third word, but just saying "pin" (or perhaps "bin") in' a noisy way. The hearer compensates if he can, on the basis of context, or else' fails to under-
stand. This feature of "discreteness" in the elementary signaling units of a Ian-r guage contrasts with the use of sound effects by way of vocal gesture. There is an effectively continuous scale of, degrees to which one may raise his voice : as in anger, or lower it tc signal confidentiality. Bee-dancing also is continuous rather than discrete.

Man is apparently almost unique 'in being able to talk about things that are remote in space or time (or bath) from where the talking goes on. This feature-"displacement"-seems to be definitely lacking in the vocal signaling of man's closest relatives, thou ${ }_{4} \mathrm{~h}$ it does occur in bee-dancing.

One of the most important designfeatures of language. is "productivity"; that is, the capacity to say things that have never been said or heard before and yet to be understood by other speakers of the language. If a gibbon makes any vocal sound at all, it is one or another of a smatl 'finite repertory of familiar calls. The gibbon call system can be characterized as dosed. Language is open, or "productive," in the sense that one can coin new utterances by putting together pieces familiar from old utterançes, assembling them by patterns of arrangement also familiar. in old utterances.
Human genes carry the capacity to acquire a Tanguage, and probably also a strong drive toward such acquisition, but the detailed conventions of any one language are transmitted extragenetically by learning and teaching. To what extent such "traditional transmission"" plays a phrt in gibbon calls or for other mammalian sustems of vocal signals is not known; though in some instances the uniformity of the sounds made by a speciessi wherever the species is found over the world, is so great that genetics must be responsible.

The meaningful elements in any lan-guage-"words": in everyday parlance, "morphemes" to the linguist-constitute an enormous stock. Yet they are represen ted by small arrangements, of relatively very small stock of distinguishable sounds which are in themselves wholly meaningless. This "duality of patterning" is illustrated by the English words

THIRTEEN DESIGN-FEATURES of animal communication, discussed in detail in the test of this article, are symbolized on opposite page. The paterns of the wards "pin," "bin," "team" and "meat" were recorded at Bell Telephone Laboratories.

also be the regular mechanism by which a speker of a language sáys something that he has not saidtbefore. Anything a speaker says must be either din exact repetition of an utterance he has heard before, or else some blended product of two "or more such familiar utterances. Thus even such a smooth and normal sentence as "I tried to get there, but the captrake down" might be produced as Wend say, of "I tried to get there but egnidnt "and "While I was driving down Main sureet the car broke down,"

Children acquiring the language of their community pass through a stage that is closed in just the way gibbon calls
are. A child may. have a 'repertory of several dozen sentences, each of, which, ; in adult terms, has an internal structure, and yet' for the child each may be an indivisible whole. He may also learn new whole utterances ${ }^{4}$ from surrounding 'adults. The child fakes the crucial step, however, when he first says something that hé has notlearned from others. The only way in which the child can possibly do this is by blending two of the whole utterances that he alread thows.

In the case of the closed call-system - of the gibbons or the protohominoids, there is no source for the addition of new
unitary calls to the repertory except perhaps by occasional imitation of the calls and 'cries of other species. Even this would not render the system productive, but would merely enlarge it. But hlending might occur. Let AB represent the food call and CD the danger call, each a fairly complex phonetic pattern. Suppose a protohominoid encountered food and caught sight of a predator at the same time. If the two stimuli were balanced just right, he might emit the calls $A B C D$ or $C D A B$ in quick sequence, or might 'even produce AD or CB. Any of these would be a blend. AD , for example, "would mean "both food and 'danger." By

EIIHTT SSTEMS OF COMMUNICATION posséss in varying degrees the 13 design-fatures of language. Column A refers-to
members of the cricket family. Column if concerns only Western.
mnsic since the timt of Bach. A question mark, mean: that it is
virtue of this, $A S$ and $C D$ would acquire new meanings, respectively "food without danger" and "danger without food." And all three of these calls- AB, CD and AD-would now' be composite rather than unitary, built out of smaller elements with their own individual: meanings: A would mean "food"; B, "no danger"; C, "no food"; and D, "danger."

But this is only part of the story. The , generation Of a blend can have no effect unless it is understood. Human beings are so good at uinderstanding blends that it is hard'to tell a blend from a rote repetition, except in the case of slips of the tongue and some Of the earliest and most
tentative blends used by children. Such powers of understanding cannot be ascribed to man's prehurfan ancestors. It must be supposed, therefore, that occasional blends occurred over many tens of thousands of years (perhaps, indeed, they still may occur from time to time among gibbons or the great apes), with rarely any appropriate communicative impact on hearers, before the under* standing of blends became speed; enough to, reinforce their production. However, once that: did happen, the earlier closed system had 'became, open' - and productive.

It is also possible to see how faint

doubtal or not known if the nystem has the particular feature. A blank space indicates that feature cannot be determined because another feature is lacking or is indefinite.
traces of displacement might develop in a caill system even in the absence of productivity, , duality and thoroughgoing, traditional transmission. Suppose an early hominid, a man-ape say, caught sight of a predator without himself being.seen. Suppose that for. whatever r\&a-son-perhaps through feat-he sneaked silently back toward other of his; band and only: a bit later gave forth the danger call. This might give the whole band a better chance to 'escape the predator, thus bect owing at least slight survival value on whatever factor was responsible forhe e delay:
Somet ting akin to communicative displacement is involved in lugging a stick or a stone around-it is like talking today about what one should do tomorrow. Of course it s not to be supposed that the first tool-carrying was purposeful, any more than that the first displaced communication, was a discussion of plans. . Caught in a cul-de-sac by a predator, however, the early hominid might strike out in terror with his stick or stone and by chance disable or drive off his enemy: In other words, the first tool-carying had a consequence but not a puspose. Because the outcome was fortunate, it tended to reinforce whatever factor, genetic or traditional, prompted the behavior and made the outcome posible. In the end such events do lead to purposive behavior.

Although *elements of displacmment might arise in this fashion, on the whole it seems likely that some degree of productivity preceded any great proliferation of communicative displacement as well as any significant capacity for traditional transmission. A produrtive slstem requires the young to catch' on to the ways in which whole signals are built out of smaller meahingful elements, some of which may never occur as whole signals in isolation. The young can do this only in the way that human children learn. their language: by learning some utterances as whole unifs, in' due time testing various blends based' on that repertory, and finaliy adjusting their patterns of blending until the bulk of what they say matches what adults woald say and is therefore understood. Part of this learning process-is bound to take place away from the precise simations for which the responses are basically appropriate, and this means the promotion of displacement. Learning and teaching. moreover, call on any capacity for traditional transmission that the band may have. Insofar as the communicative system itself has survival value, all this bestows survival value also on the cupacity
fsr traditional transmission and for, displacement. But these in turn increase the survival value of the communicative system. A child can be taught how to avoid certain dangers before he actually encounters them.

These developmen ts are also necessarily related to the appearance of large and convoluted brains, which are beter starage Units for the conventions Of atcomplex communicative system and To. other traditionally transmitted skills and practices. Hence $t h e$ adaptative value of- the, behavior serves to select genetically for the change in structure. A lengthened period of childhood helplossuess is also a longer period oh plästicits: for leaming. There is therefore selection for prolonged chilahood and, with it, later maturity and longer life. With more for the young to learn, and with male as well as female tasks to be taught fathers become"more domesticated. The increase of displacement 'promotes rc-
tention and forresight; a male can protect his mate and guard her jealously from other males even why lhe does not at the moment hünger for, her.

There is excellent 'reason! to believe that duality of patterning, was the last. property to be developed; because one . can find little' if any reason why a com municative system should,. have hirs property Unless it is highly complicated. If a vocal-auditory system comes to have a larger and larger number 'of distinct meaningful elements, those elemehts inevitably come to be more and mone-similar to one another in sound. There is a practical limit, for any species or' any machine; to the number of distinct, stim: uli that can be discriminated, especially when the distriminations typically have to he made in noisy conditjons. Suppose that Samuel F. 13. Morse, in devising 'his telegraph code, had proposed a signal , i second long for " A, " 2 second long for "B," kand so on up to 2.6 seconds for "Z." Operators would have enormous

SI BHUMAN PRIMATE C:ALLS are represented here by sound spectrograms of the roar (top) and bark (bottom) of the howler monkey. Freguencies are shown vertically; time, horizontally. Roaring, the most promineph howler voenlization, regulates internetions and movements of groups of monkeys, and has both defensive and 'offensive functions. Barking hats similar necanings but occurs when the monkeys nre not quite 50 excited. Spectrograms were produced at Bell Teleghone Laboratories from recordings made by Charless Southwick of the University of Southern 0 hio duting an expedition to Barro Colorado Island in the Canal Zone. The expedition was directed by C. R. Carpenter of Pennsylvania State University.
difficulty learning aind 'using any such system. What Morse actually did was to incorporate the principle, of duality of patterning. The telegraph operator has to learn to discriminate, in the first instance, only two lengths of pulse and about three lengths of pause. Each letter is coded into a diffedent arrangement of these élementary meaniugless units. The arrangements are easily kept apart because the few meaningless, units are plainly distinguishable.
Thk analogy explains why it was advantageous for the forerunner of language, as it was becoming increasingly complex, to acquire duality of patterning. However it occurred, this was a major breaktirough; without it linguage could not peossibly have achieved the efficiency and th exibility it has.

One of the basic principles of evoliitionary theory holds that the initial sur vival value of any imovaition is comservative in that it makes possible the maintenance of a largely traditional way of life in the face of changed circumstances. There was nothing in the makeup of fhe protohominoids that destined their descendants to become. human. Some of them; indeed, did not. They made their way to ecological niches where food was pleptiful and predafors ".sufficiently ayoidable and where the de velopment of' primitive varieties of lamguage and culture would hate bestowed no advantage. They survive still, with various sorts of specializations, as the gibbons and thesseat apes.

MMn's own remote ancerors, mens must have come to live incircumstances .where a slightly more flexible system of communication, the incipient carrying and shaping of tools, and a slight increase in the capacity for traditional transmission made just the tifference between surviving-largely, be -it *noted, by the-good old protohominoid way of life-and dying out. There are various possibilities. If predators become m o r e numerous and dangerous, anv Inonce use Of a tool as il weapon, any co-operative mode of escripe or attack might restore the balance. If food became scarter, anx่ teçhnique for Eracking harder nuts, for foraging over a wider territory, for sharing food so gathored or storing it when it was plentiful might promote survival of t h e bind. Only after a very, long period of such small adjustments to tiny changes of living oonditions of Oul21 the factors involved -incipient Innguage, incipient tool-carrying and, toolmaking, incipient culturehave started lendïng the way to a new pattem of life, of the kind called humin.

